Skip to main content
Log in

Selective-emitter crystalline silicon solar cells using phosphorus paste

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Selective-emitter structures have been studied to improve the conversion efficiency of crystalline silicon solar cells. However, such structures require additional complicated processes and incur extra cost. In this work, we used phosphorus paste (P-paste) to form a heavily-doped region beneath the grid and POCl3 to create a shallow emitter area. This method should be convenient to use in the solar-cell industry because it requires only additional P paste printing, compared to the case of homogeneous solar cells. Diffusion parameters including the temperature, diffusion time, and ambient gases were optimized. We observed that the spreading of the P paste was affected by the pyramidal size of the textured wafer due to the low viscosity of the P paste. The pyramidal height of the textured silicon surface was optimized at 3 μm to counterbalance the surface reflectance and the spreading of the P paste. The short-circuit current density of the completed selective emitter solar cell was increased, and an improvement of blue response in the internal quantum efficiency was seen while contact properties such as the fill factor deteriorated due to the spreading of the P paste and the thin emitter on top of the pyramid of the textured silicon surface. Double printing of the P paste was applied to solve this contact problem; a fill factor improvement of 2.4% was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. H. Lee, J. Korean Phys. Soc. 39, 369 (2001).

    Google Scholar 

  2. D. Poplavskyy, G. Scardera, M. Abbott, A. Meisel, X. Chen, S. Shah, E. Tai, M. Terry and F. Lemmi, 35th IEEE Photovoltaic Specialists Conference, (Honolulu, HI, June 2010, p. 3565).

    Google Scholar 

  3. A. Safiei, H. Windgassen, K. Wolter, and H. Kurz, Energy Procedia 27, 432 (2012).

    Article  ADS  Google Scholar 

  4. A. Ebong, I. B. Cooper, B. C. Rounsaville, F. Zimbardi, A. Upadhyaya, A. Rohatgi, W. Borland, K. Mikeska and A. Carroll, 37th IEEE Photovoltaic Specialists Conference, (Seattle, WA, June 2011), p. 2157.

    Google Scholar 

  5. J. Ho et al., Elect. Lett. 46, 1559 (2010).

    Article  Google Scholar 

  6. F. Colville, Technical papers in Photovoltaic International Magazine (5th ed.), p. 1, (2010).

    Google Scholar 

  7. D. Oh et al., 37th IEEE Photovoltaic Specialists Conference, (Seattle, WA, June 2011), p. 2189.

    Google Scholar 

  8. F. Book, B. Raabe and G. Hahn, Proceeding in 23rd European Photovoltaic Solar Energy Conference, (Valencia, Spain, September 2008), p. 1546

    Google Scholar 

  9. D. Rudolph, K. Peter, A. Meijer, O. Doll and I. Köhler, Proceeding in 26th European Photovoltaic Solar Energy Conference, (Hamburg, Germany, September 2011), p. 1349

    Google Scholar 

  10. M. Jeon, J. Lee, S. Kim, W. Lee and E. Cho, Mater. Sci. Eng. B 176, 1285 (2011).

    Article  Google Scholar 

  11. T. Y. Kwon, D. H. Yang, M. K. Ju, W. W. Jung, S. Y. Kim, Y. W. Lee, D. Y. Gong and J. Yi, Sol. Energy Mater. Sol. Cells 95, 14 (2011).

    Article  Google Scholar 

  12. J. Horzel, J. Szlufcik, J. Nijs and R. Mertens, 26th IEEE Photovoltaic Specialists Conference, (Amaheim, CA, September 1997), p. 139

    Google Scholar 

  13. C. Du, H. Liu and S. Hsu, 34th IEEE Photovoltaic Specialists Conference, (Philadelphia, PA, June 2009), p. 646

    Google Scholar 

  14. A. Uzum et al., Sol. Energy Mater. Sol. Cells 109, 288 (2013).

    Article  Google Scholar 

  15. M. Müller, P. P. Altermatt, K. Schlegel and G. Fischer, Energy Procedia 27, 293 (2012).

    Article  Google Scholar 

  16. M. Edwards, J. Bocking, J. E. Cotter and N. Bennett, Prog. Photovoltaics 16, 31 (2008).

    Article  Google Scholar 

  17. J. Nelson, The Physics of Solar Cells (Imperial College Press, London, 2004).

    Google Scholar 

  18. S. T. Kim, Master’s Thesis, Department of Materials Science and Engineering, Korea University, Seoul (2011).

    Google Scholar 

  19. D. Kim, S. Hwang and H. Kim, J. Korean Phys. Soc. 55, 1046 (2009).

    Article  ADS  Google Scholar 

  20. I. B. Cooper, K. Tate, A. F. Carroll, K. R. Mikeska, R. C. Reedy and A. Rohatgi, 38th IEEE Photovoltaic Specialists Conference, (Austin, TX, June 2012), p. 3359

    Google Scholar 

  21. J. F. Nijs, J. Szlufcik, J. Poortmans, S. Sivoththaman and R. P. Mertens, Sol. Energy Mater. Sol. Cells 65, 249 (2001).

    Article  Google Scholar 

  22. A. Mouhoub, B. Benyahia, B. Mahmoudi and A. Mougas, Rev. Energ. Ren.:ICPWE, 83 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min Gu Kang or Hee-eun Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, K.T., Kang, M.G. & Song, He. Selective-emitter crystalline silicon solar cells using phosphorus paste. Journal of the Korean Physical Society 65, 1457–1461 (2014). https://doi.org/10.3938/jkps.65.1457

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1457

Keywords

Navigation