Skip to main content
Log in

Theoretical modeling and optimization of III–V GaInP/GaAs/Ge monolithic triple-junction solar cells

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We design and optimize monolithic III–V GaInP/GaAs/Ge triple-junction (TJ) solar cells by using a commercial software Silvaco ATLAS simulator to obtain the maximum short-circuit current density J sc . The maximum J sc , which is a current matching value between the GaInP top and GaAs middle subcells, can be determined by varying the base thicknesses of the GaInP top and GaAs middle subcells. From the numerical simulation results, a matched maximum J sc value of 13.92 mA/cm2 is obtained at base thicknesses of 0.57 μm and 3 μm for the GaInP top and GaAs middle subcells, respectively, under 1-sun air mass 1.5 global spectrum illumination, leading to a high power conversion efficiency of 30.72%. The open-circuit voltage and the fill factor are 2.55 V and 86.55%, respectively. For the optimized cell structure, the external quantum efficiency and the photogeneration rate distributions are also investigated. To obtain efficient antireflection coatings (ARCs), we perform optical reflectance calculations by using a rigorous coupled-wave analysis method. For this, a silicon oxide/titanium oxide double-layer is used as an ARC on the TJ solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Leite, R. L. Woo, J. N. Munday, W. D. Hong, S. Mesropian, D. C. Law and H. A. Atwater, Appl. Phys. Lett. 102, 033901 (2013).

    Article  ADS  Google Scholar 

  2. M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, Prog. Photovolt: Res. Appl. 21, 1 (2013).

    Article  Google Scholar 

  3. R. R. King et al., Proceedings of the 28th IEEE Photovoltaic Specialists Conference, (Anchorage, Alaska, Sep. 15–22, USA, 2000), p. 998.

    Book  Google Scholar 

  4. Solar Junction, http://www.sj-solar.com, accessed Mar. (2013).

  5. H. Keppner, J. Meier, P. Torres, D. Fischer and A. Shah, Appl. Phys. A 69, 169 (1999).

    Article  ADS  Google Scholar 

  6. J. W. Leem, Y. T. Lee and J. S. Yu, Opt. Quant. Electron. 41, 605 (2009).

    Article  Google Scholar 

  7. A. W. Bett, F. Dimroth, G. Stollwerck and O. V. Sulima, Appl. Phys. A 69, 119 (1999).

    Article  ADS  Google Scholar 

  8. C. M. Lee, S. K. Noh, J. I. Lee, D. H. Lee, J. Y. Leem, I. K. Han, T. Mano and N. Koguchi, J. Korean Phys. Soc. 41, L579 (2002).

    Google Scholar 

  9. K. Lee, B. Jo, C. R. Lee, J. S. Kim, J. S. Kim, S. K. Noh and J. Y. Leem, J. Korean Phys. Soc. 59, 3391 (2011).

    Article  Google Scholar 

  10. Q. A. H. Al-Naser, H. W. Hilou and A. F. Abdulkader, Proceedings of 2009 ISECS International Colloquium on Computing, Communication, Control, and Management, (August 8–9, Sanya, China, 2009), p. 373.

    Book  Google Scholar 

  11. K. J. Singh and S. K. Sarkar, Opt. Quant. Electron. 43, 1 (2012).

    Article  Google Scholar 

  12. S. Michael, Sol. Energy Mater. Sol. Cells 87, 771 (2005).

    Article  Google Scholar 

  13. J. W. Leem and J. S. Yu, Opt. Express 19, A258 (2011).

    Article  Google Scholar 

  14. S. T. Chang, M. Tang, R.Y. He, W. C. Wang, Z. Pei and C. Y. Kung, Thin Solid Films 518, S250 (2010).

    Article  ADS  Google Scholar 

  15. J. L. Tu, Z. W. Zhang, L. X. Wang, W. Y. Chi, M. B. Chen, X. B. Xiang and X. B. Liao, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, (Orlando, Florida, USA, January 3–7, 2005), p. 739.

    Google Scholar 

  16. Silvaco ATLAS User’s Manual, http://www.silvaco.com, accessed Mar. (2013).

  17. S. I. Sato, H. Miyamoto, M. Imaizumi, K. Shimazaki, C. Morioka, K. Kawano and T. Ohshima, Sol. Energy Mater. Sol. Cells 93, 768 (2009).

    Article  Google Scholar 

  18. E. Yoon, C. Yang, K. W. Shin, J. Kim, J. Lee, C. Z. Kim, H. K. Kang and W. K. Park, J. Korean Phys. Soc. 56, 1387 (1995).

    Google Scholar 

  19. DiffractMOD, RSoft Design Group, http://www.rsoft design.com, accessed Jan. (2013).

  20. H. Cui, S. Pillai, P. Campbell and M. Green, Sol. Energy Mater. Sol. Cells 109, 233 (2013).

    Article  Google Scholar 

  21. A. Braun, N. Szabó, K. Schwarzburg, T. Hannappel, E. A. Katz and J. M. Gordon, Appl. Phys. Lett. 98, 223506 (2011).

    Article  ADS  Google Scholar 

  22. S. Michael and A. Bates, Sol. Energy Mater. Sol. Cells 87, 785 (2005).

    Article  Google Scholar 

  23. R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif and N. H. Karam, Appl. Phys. Lett. 90, 183516 (2007).

    Article  ADS  Google Scholar 

  24. D. Shahrjerdi, S. W. Bedell, C. Ebert, C. Bayram, B. Hekmatshoar, K. Fogel, P. Lauro, M. Gaynes, T. Gokmen, J. A. Ott and D. K. Sadana, Appl. Phys. Lett. 100, 053901 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Su Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leem, J.W., Yu, J.S., Kim, J.N. et al. Theoretical modeling and optimization of III–V GaInP/GaAs/Ge monolithic triple-junction solar cells. Journal of the Korean Physical Society 64, 1561–1565 (2014). https://doi.org/10.3938/jkps.64.1561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.64.1561

PACS numbers

Keywords

Navigation