Skip to main content
Log in

Compact experimental apparatus for producing high-repetition-rate 87Rb Bose-Einstein condensation on an atom chip

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We construct a compact experimental apparatus for producing high-repetition-rate ultra cold 87Rb atom based on an external atom chip. Initially, we produce an atomic flux from a 2D+ MOT (magneto-optical trap) in a nearly isolated 2D+ MOT chamber and improve the flux by adjusting the cooling beam detuning of the 2D+ MOT. The flux is trapped in the 3D MOT for 1.2 s and is further cooled by performing compressing the MOT for 20 ms and using polarization gradient cooling for 6.2 ms. After optical pumping into the 5S F = 2 (m F = 2) ground state, we transport atoms toward the chip surface by performing external Z coil trapping. At 1 mm below the chip surface, the external Z coil trap is completely switched to an atom chip trap by using a Z wire and a dimple wire on the chip with external bias fields. The transport and the switching take totally 520 ms. The number of atoms trapped on the atom chip is measured to be about 2 × 107. After the atoms has been compressed for 100 ms to increase trap frequencies, we perform RF evaporative cooling in the RF frequency range from 32 MHz to 6.82 MHz for 2.4 seconds. The final number of atoms in the atomic cloud after RF cooling is 1.2 × 105 atoms, and we are able to observe some Bose-Einstein condensation. The repetition rate for producing the condensation is 0.234 Hz. In this paper, we describe our experimental apparatus and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman and E. A. Cornell, Science. 269, 198 (1995).

    Article  ADS  Google Scholar 

  2. K. B. Davis, M. O. Mewes, M. R. Andrews, N. J. van Druten, D. S. Durfee, D. M. Kurn and W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995).

    Article  ADS  Google Scholar 

  3. P. Treutlein, P. Hommelhoff, T. Steinmetz, T. W. Hänsch and J. Reichel, Phys. Rev. Lett. 92, 203005 (2004).

    Article  ADS  Google Scholar 

  4. F. Baumgärtner, R. J. Sewell, S. Eriksson, I. Llorente-Garcia, J. Dingjan, J. P. Cotter and E. A. Hinds, Phys. Rev. Lett. 105, 243003 (2010).

    Article  ADS  Google Scholar 

  5. K. Maussang, G. E. Marti, T. Schneider, P. Treutlein, Y. Li, A. Sinatra, R. Long, J. Estève and J. Reichel, Phys. Rev. Lett. 105, 080403 (2010).

    Article  ADS  Google Scholar 

  6. Saijun Wu, Edward Su and Mara Prentiss, Phys. Rev. Lett. 99, 173201 (2007).

    Article  ADS  Google Scholar 

  7. P. Böhi, M. F. Riedel, J. Horogge, J. Reichel, T. W. Hänsch and P. Treutlein, Nature Phys. 5, 592 (2009)

    Article  ADS  Google Scholar 

  8. A. D. Cronin, J. Schmiedmayer and D. E. Pritchard, Rev. Mod. Phys. 81, 1051 (2009).

    Article  ADS  Google Scholar 

  9. I. Bloch, J. Dalibard and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  10. W. Häansel, P. Hommelhoff, T. W. Häansch and J. Reichel, Nature 413, 498 (2001)

    Article  ADS  Google Scholar 

  11. J. Fortágh and C. Zimmermann, Rev. Mod. Phys. 79, 235 (2007).

    Article  ADS  Google Scholar 

  12. S. Du, M. B. Squire, Y. Imai, L. Czaia, R. A. Saeavanan, V. Bright, J. Reichel, T. W. Hänsch and D. Z. Anderson, Phys. Rev. A 70, 053606 (2004).

    Article  ADS  Google Scholar 

  13. J. Reichel and V. Vuletić, Atom Chips (Wiley-VCH, Weinheim, 2010).

    Google Scholar 

  14. D. M. Farkas, K. M. Hudek, E. A. Salim, S. R. Segal, M. B. Squires and D. Z. Anderson, Appl. Phys. Lett. 96, 093102 (2010).

    Article  ADS  Google Scholar 

  15. M. B. Squires, “High repetition rate Bose-Einstein condensate production in a compact, transportable vacuum system”, JILA, PhD dissertation (2008).

    Google Scholar 

  16. H. Ott, J. Fortagh, G. Schlotterbeck, A. Grossmann and C. Zimmermann, Phys. Rev. Lett. 87, 230401 (2001).

    Article  ADS  Google Scholar 

  17. H. Yu, H. K. Lee, M. H. Choi and J. B. Kim, New Phys.: Sae Mulli 62, 399 (2012).

    Article  Google Scholar 

  18. W. Ketterle, D. S. Durfee and D. M. Stamper-Kurn, Bose-Einstein Condensation in Atomic Gases: Proceedings of the International School of Physics “Enrico Fermi”, Course CXL, edited by M. Inguscio, S. Stringari, and C. E. Wieman (IOS Press, Amsterdam, 1999).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung Bog Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, H., Kim, S.J., Moon, Y.L. et al. Compact experimental apparatus for producing high-repetition-rate 87Rb Bose-Einstein condensation on an atom chip. Journal of the Korean Physical Society 63, 900–906 (2013). https://doi.org/10.3938/jkps.63.900

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.63.900

Keywords

Navigation