Skip to main content
Log in

Influence of phonon confinement on the optically-detected electrophonon resonance linewidth in rectangular quantum wires

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the influence of phonon confinement on the optically-detected electrophonon resonance (ODEPR) effect and ODEPR linewidth in rectangular quantum wires (RQW). The ODEPR conditions as functions of the wire’s size and the photon energy are also obtained. The splittings of ODEPR peaks caused by the confined phonon are discussed. The numerical result for a specific RQW shows that in the two cases of confined and bulk phonons, the linewidth decreases with increasing wire size and increases with increasing temperature. Furthermore, in the small range of the wire’s size (L ≤ 40 nm), phonon confinement plays an important role and cannot be neglected in reaching the ODEPR linewidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Miloszewski, M. S. Wartak, P. Weetman and O. Hess, J. Appl. Phys. 106, 063102 (2009).

    Article  ADS  Google Scholar 

  2. H. N. Spector, J. Lee and P. Melman, Phys. Rev. B 34, 2554 (1986).

    Article  ADS  Google Scholar 

  3. S. H. Park and S. L. Chuang, Appl. Phys. A 78, 107 (2004).

    Article  ADS  Google Scholar 

  4. S. Melnik, G. Huyet and A. V. Uskov, Opt. Express 14, 2950 (2006).

    Article  ADS  Google Scholar 

  5. F. Zhang, L. Li, X. H. Ma, Z. G. Li, Q. X. Sui, X. Gao, Y. Qu, B. X. Bo and G. J. Liu, Acta Phys. Sin. 61, 054209 (2012).

    Google Scholar 

  6. P. K. Kondratko, S. L. Chuang, G. Walter, T. Chung and N. Holonyak, Appl. Phys. Lett. 83, 4818 (2003).

    Article  ADS  Google Scholar 

  7. H. Weman, L. Sirigu, K. F. Karlsson, K. Leifer, A. Rudra and E. Kapon, Appl. Phys. Lett. 81, 2839 (2002).

    Article  ADS  Google Scholar 

  8. H. Ham and H. N. Spector, Phys. Rev. B 62, 13599 (2000).

    Article  ADS  Google Scholar 

  9. H. Ham and H. N. Spector, J. Appl. Phys. 90, 2781 (2001).

    Article  ADS  Google Scholar 

  10. W. H. Seo and B. H. Han, Solid State Commun. 119, 367 (2001).

    Article  ADS  Google Scholar 

  11. C. Matthiesen, A. N. Vamivakas and M. Atatüre, Phys. Rev. Lett. 108, 093602 (2012).

    Article  ADS  Google Scholar 

  12. C. Y. Lin, F. Grillot, N. A. Naderi, Y. Li and L. F. Lester, Appl. Phys. Lett. 96, 051118 (2010).

    Article  ADS  Google Scholar 

  13. K. C. Kim, I. K. Han, J. I. Lee and T. G. Kim, Nanotechnology 21, 134010 (2010).

    Article  ADS  Google Scholar 

  14. A. Ulhaq et al., Phys. Rev. B 82, 045307 (2010).

    Article  ADS  Google Scholar 

  15. F. X. Peng, M. J. Hai, L. X. Jin, X. G. Yong, Z. H. Yong and Y. Tao, Opt. Lett. 37, 1298 (2012).

    Article  ADS  Google Scholar 

  16. J. K. Jain and S. Das Sarma, Phys. Rev. Lett. 62, 2305 (1989).

    Article  ADS  Google Scholar 

  17. B. K. Ridley, Phys. Rev. B. 39, 5282 (1989).

    Article  ADS  Google Scholar 

  18. S. Rudin and T. L. Reinecke, Phys. Rev. B 41, 7713 (1990).

    Article  ADS  Google Scholar 

  19. D. Dunn and A. Suzuki, Phys. Rev. B 29, 942 (1984).

    Article  ADS  Google Scholar 

  20. Y. J. Cho and S. D. Choi, Phys. Rev. B 49, 14301 (1994).

    Article  ADS  Google Scholar 

  21. T. C. Phong and H. V. Phuc, Mod. Phys. Lett. B 25, 1003 (2011).

    Article  ADS  Google Scholar 

  22. T. C. Phong, L. T. T. Phuong and H. V. Phuc, Superlattice Microst. 52, 16 (2012).

    Article  ADS  Google Scholar 

  23. H. V. Phuc, L. Dinh and T. C. Phong, J. Korean Phys. Soc. 60, 1381 (2012).

    Article  ADS  Google Scholar 

  24. V. B. Campos, S. Das Sarma and M. A. Stroscio, Phys. Rev. B 46, 3849 (1992).

    Article  ADS  Google Scholar 

  25. N. C. Constantinou and B. K. Ridley, Phys. Rev. B 41, 10622 (1990).

    Article  ADS  Google Scholar 

  26. S. N. Yi, J. J. Song, K. S. Bae and S. D. Choi, Physica B 222, 209 (1996).

    Article  Google Scholar 

  27. N. L. Kang and S. D. Choi, J. Phys. Soc, Jpn. 78, 024710 (2009).

    Article  ADS  Google Scholar 

  28. N. L. Kang, H. J. Lee and D. D. Choi, J. Korean Phys. Soc. 44, 938 (2004).

    Google Scholar 

  29. H. J. Lee, N. L. Kang, J. Y. Sug and S. D. Choi, Phys. Rev. B 65, 195133 (2002).

    ADS  Google Scholar 

  30. M. A. Stroscio, Phys. Rev. B 40, 6428 (1989).

    Article  ADS  Google Scholar 

  31. M. Masale and N. C. Constantinou, Phys. Rev. B 48, 11128 (1993).

    Article  ADS  Google Scholar 

  32. S. C. Lee, J. Korean Phys. Soc. 52, 1832 (2008).

    Article  ADS  Google Scholar 

  33. S. C. Lee, J. W. Kang, H. S. Ahn, M. Yang, N. L. Kang and S. W. Kim, Physica E 28, 402 (2005).

    Article  ADS  Google Scholar 

  34. P. A. Knipp and T. L. Reinecke, Phys. Rev. B 48, 5700 (1993).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Cong Phong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phong, T.C., Thu Phuong, L.T., Phuc, H.V. et al. Influence of phonon confinement on the optically-detected electrophonon resonance linewidth in rectangular quantum wires. Journal of the Korean Physical Society 62, 305–310 (2013). https://doi.org/10.3938/jkps.62.305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.305

Keywords

Navigation