Skip to main content
Log in

Bandwidth-broadening properties by using a variable width structure in a cantilever-type piezoelectric energy scavenger

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this paper, we present the simulation and the experimental results for vibration-energy-scavenging performances in a cantilever-type piezoelectric energy scavenger with bandwidth broadening properties by using a variable width structure. Using the measured mechanical damping ratio and electro-mechanical coupling coefficient of the fabricated cantilever-type device, we simulated the output performances and designed a cantilever-type piezoelectric energy scavenger with bandwidth broadening characteristics. A device based on a parallel-bimorph cantilever structure with a proof mass, which was designed to have a natural resonance frequency of about 60 Hz, and the energy-scavenging capability of a piezoelectric single crystal was measured and compared them with the simulated results. The results showed that several tens of ac volts and a few milliwatts of power were achieved under a 0.1 g rms vibration condition with a 3 Hz bandwidth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Lee, ETRI J. 32, 540 (2010).

    Article  Google Scholar 

  2. S. E. Moon, S.-K. Lee, H.-K. Lee, J.-W. Lee, Y.-S. Yang and J. Kim, J. Korean Phys. Soc. 58, 645 (2011).

    Article  Google Scholar 

  3. I. Kim, H. Joo, S. Jeong, M. Kim and J. Song, J. Korean Phys. Soc. 56, 370 (2010).

    Article  Google Scholar 

  4. S. P. Beeby, M. J. Tudor and N. M. White, Meas. Sci. Technol. 17, R175 (2006).

    Article  Google Scholar 

  5. S. C. Stanton, C. C. McGehee and B. P. Mann, Appl. Phys. Lett. 95, 174103 (2009).

    Article  ADS  Google Scholar 

  6. M. Ferrari, V. Ferrari, M. Guizzetti, D. Mrioli and A. Taroni, Sens. Actuators, A 142, 329 (2008).

    Article  Google Scholar 

  7. S. Qi, R. Shuttleworth, S. O. Oyadiji and J. Wright, Smart Mater. Struct. 19, 094009 (2010).

    Article  ADS  Google Scholar 

  8. B. Marinkovic and H. Koser, Appl. Phys. Lett. 94, 103505 (2009).

    Article  ADS  Google Scholar 

  9. A. Hajati and S.-G. Kim, Appl. Phys. Lett. 99, 083105 (2011).

    Article  ADS  Google Scholar 

  10. D. Shen, S.-Y. Choe and D.-J. Kim, Jpn. J. Appl. Phys. 46, 6755 (2007).

    Article  ADS  Google Scholar 

  11. A. Badel, A. Benayad, E. Lefeuvre, L. Lebrun, C. Richard and D. Guyomar, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 673 (2006).

    Google Scholar 

  12. J. H. Cho, R. F. Richards, D. F. Bahr and C. D. Ri-chards, in IEEE Ultrasonics Symposium (Vancouver, Canada, October 2–6, 2006), p. 485.

  13. J. Twiefel, B. Richter, T. Sattel and J. Wallaschek, J. Electroceram. 20, 203 (2008).

    Article  Google Scholar 

  14. S. Roundy, P. K. Wright and J. Rabaey, Comput. Commun. 26, 1131 (2003).

    Article  Google Scholar 

  15. http://www.ceracomp.com

  16. J. W. Yi, W. Y. Shih and W. H. Shih, J. Appl. Phys. 91, 1680 (2003).

    Article  ADS  Google Scholar 

  17. S. Priya, Appl. Phys. Lett. 87, 18410 (2005).

    Article  Google Scholar 

  18. A. Erturk and D. J. Inman, J. Intell. Mater. Syst. Struct. 19, 1311 (2008).

    Article  Google Scholar 

  19. J. Ajitsaria, S. Y. Choe, D. Shen and D. J. Kim, Smart Mater. Struct. 16, 447 (2007).

    Article  ADS  Google Scholar 

  20. M. Ferrari, V. Ferrari, D. Marioli and A. Taroni, IEEE Trans. Instrum. Meas. 55, 2096 (2006).

    Article  Google Scholar 

  21. C. H. Park, J. Sound Vib. 268, 115 (2003).

    Article  ADS  Google Scholar 

  22. Q. Chen and Q. M. Wang, Appl. Phys. Lett. 86, 022905 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. E. Moon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moon, S.E., Yang, W.S., Kim, J. et al. Bandwidth-broadening properties by using a variable width structure in a cantilever-type piezoelectric energy scavenger. Journal of the Korean Physical Society 61, 908–912 (2012). https://doi.org/10.3938/jkps.61.908

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.61.908

Keywords

Navigation