Skip to main content
Log in

Residual strain effects on the luminescence properties of self-organized GaN vertical nanorods grown by using HVPE

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

The optical, structural, and vibrational properties of self-assembled GaN nanorods (NRs) were systematically examined to help understand the impact of residual strains on their emission properties. The GaN NRs grown at temperatures less than 550 °C displayed line-defects along the a-axis, which are responsible for the residual compressive strain in the GaN NRs. The residual compressive strain, which depends on the growth temperature, gave rise to a blue-shift of the effective optical band-gap. Compared to the GaN thin films, the influence of residual strains on the blue-shift were more than 3-times greater for GaN NRs. This implies that growth interruptions to control the growth temperatures and/or source fluxes would be more critical in the fabrication of GaN-NR-based light-emitting devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Li and A. Waag, J. Appl. Phys. 111, 071101 (2012).

    Article  ADS  Google Scholar 

  2. C. H. Chiu et al., Nanotechnology 18, 445201 (2007).

    Article  ADS  Google Scholar 

  3. M.-L. Kuo, Y.-S. Kim, M.-L. Hsieh and S.-Y. Lin, Nano Lett. 11, 476 (2011).

    Article  ADS  Google Scholar 

  4. H.-W. Lin, Y.-J. Lu, H.-Y. Chen, H.-M. Lee and S. Gwo, Appl. Phys. Lett. 97, 073101 (2010).

    Article  ADS  Google Scholar 

  5. K. Zang and S. J. Chua, Phys. Status Solidi C 7, 2236 (2010).

    Article  ADS  Google Scholar 

  6. H. Ying-Yuan et al., Nanotechnology 22, 045202 (2011).

    Article  ADS  Google Scholar 

  7. J. Bai, Q. Wang and T. Wang, Phys. Status Solidi A 209, 477 (2012).

    Article  ADS  Google Scholar 

  8. D. Wang, C. C. Tin, J. R. Williams, M. Park, Y. S. Park, C. M. Park, T. W. Kang and W. C. Yang, Appl. Phys. Lett. 87, 242105 (2005).

    Article  ADS  Google Scholar 

  9. H.-Y. Chen, H.-W. Lin, C.-H. Shen and S. Gwo, Appl. Phys. Lett. 89, 243105 (2006).

    Article  ADS  Google Scholar 

  10. H. W. Seo, Q. Y. Chen, M. N. Iliev, L. W. Tu, C. L. Hsiao, J. K. Mean and W.-K. Chu, Appl. Phys. Lett. 88, 153124 (2006).

    Article  ADS  Google Scholar 

  11. L. W. Tu, C. L. Hsiao, T. W. Chi, I. Lo and K. Y. Hsieh, Appl. Phys. Lett. 82, 1601 (2003).

    Article  ADS  Google Scholar 

  12. C.-Y. Nam, P. Jaroenapibal, D. Tham, D. E. Luzzi, S. Evoy and J. E. Fischer, Nano Lett. 6, 153 (2006).

    Article  ADS  Google Scholar 

  13. H. Choe, S. Lee, Y. Sohn and C. Kim, Phys. Status Solidi C 5, 1699 (2008).

    Article  ADS  Google Scholar 

  14. S. Lee, H. S. Lee, C. S. Han, T. W. Kang and D. Y. Kim, J. Cryst. Growth 297, 10 (2006).

    Article  ADS  Google Scholar 

  15. H.-M. Kim, D. S. Kim, D. Y. Kim, T. W. Kang, Y.-H. Cho and K. S. Chung, Appl. Phys. Lett. 81, 2193 (2002).

    Article  ADS  Google Scholar 

  16. R. Dingle, D. D. Sell, S. E. Stokowski and M. Ilegems, Phys. Rev. B 4, 1211 (1971).

    Article  ADS  Google Scholar 

  17. F. Widmann, J. Simon, B. Daudin, G. Feuillet, J. L. Rouvi`ere, N. T. Pelekanos and G. Fishman, Phys. Rev. B 58, R15989 (1998).

    Article  ADS  Google Scholar 

  18. F. Widmann, B. Daudin, G. Feuillet, Y. Samson, J. L. Rouviere and N. Pelekanos, J. Appl. Phys. 83, 7618 (1998).

    Article  ADS  Google Scholar 

  19. S. Chichibu, A. Shikanai, T. Azuhata, T. Sota, A. Kuramata, K. Horino and S. Nakamura, Appl. Phys. Lett. 68, 3766 (1996).

    Article  ADS  Google Scholar 

  20. K. Fleischer, M. Toth, M. R. Phillips, J. Zou, G. Li and S. J. Chua, Appl. Phys. Lett. 74, 1114 (1999).

    Article  ADS  Google Scholar 

  21. D. G. Zhao, S. J. Xu, M. H. Xie, S. Y. Tong and H. Yang, Appl. Phys. Lett. 83, 677 (2003).

    Article  ADS  Google Scholar 

  22. W. Rieger, T. Metzger, H. Angerer, R. Dimitrov, O. Ambacher and M. Stutzmann, Appl. Phys. Lett. 68, 970 (1996).

    Article  ADS  Google Scholar 

  23. A. Shikanai, T. Azuhata, T. Sota, S. Chichibu, A. Kuramata, K. Horino and S. Nakamura, J. Appl. Phys. 81, 417 (1997).

    Article  ADS  Google Scholar 

  24. Y. Xie, Y. Qian, W. Wang, S. Zhang and Y. Zhang, Science 272, 1926 (1996).

    Article  ADS  Google Scholar 

  25. K. Kanaya and S. Okayama, J. Phys. D: Appl. Phys. 5, 43 (1972).

    Article  ADS  Google Scholar 

  26. G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

    Google Scholar 

  27. M. Suzuki, T. Uenoyama and A. Yanase, Phys. Rev. B 52, 8132 (1995).

    Article  ADS  Google Scholar 

  28. H.-L. Liu, C.-C. Chen, C.-T. Chia, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, S. Keller and S. P. DenBaars, Chem. Phys. Lett. 345, 245 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sejoon Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Lee, Y. & Kim, D.Y. Residual strain effects on the luminescence properties of self-organized GaN vertical nanorods grown by using HVPE. Journal of the Korean Physical Society 62, 518–522 (2013). https://doi.org/10.3938/jkps.62.518

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.62.518

Keywords

Navigation