Skip to main content
Log in

You can’t ignore what you can’t separate: the effect of visually induced target-distractor separation on tactile selection

  • Brief Report
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Research suggests that vision of the body-part that happens to receive a tactile event enhances the processing of this stimulus. However, it would appear that only tactile distractors delivered to visible body-parts are processed up to the level of response selection. Here, we analyze whether vision or higher order cognitive processes influence the processing of tactile distractors. We compared the processing of distractors in a tactile variant of the Eriksen flanker task when the body-parts receiving target and distractor stimuli were separated by different types of barriers. Surprisingly, an impermeable barrier prevented tactile distractors from being processed up to the response level, irrespective of whether the barrier was transparent or opaque. By contrast, when an empty frame was placed between the participant’s hands, distractors were processed up to the level of response selection. Hence, higher order cognition (here the visually induced representation of the target-distractor separation) influences the processing of tactile distractors. We discuss these results in the light of related findings from selective reaching experiments as well as in terms of Gestalt grouping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. One may wonder why occluder type did not modulate the average performance (irrespective of the flanker effects); i.e., it could be argued that target processing per se should be influenced by the occluder type, perhaps the strongest in the condition with a centrally presented target hand. We therefore selectively compared the mean accuracy between the opaque-occluder and no-occluder conditions only for target central trials – in which the direction of gaze as well as the occlusion of the distractor from view might be expected to facilitate target processing. However, still no significant influence of the occluder was observed, t <1 (t <1, also for mean RTs). We replicated this result in a control experiment (n =36) contrasting a no-occluder condition to a condition in which the distractor hand was positioned 40 cm apart from the body midline under an occluder box, and was additionally separated from the target by means of an opaque shield positioned between the hands. Still, the opaque and no-occluder conditions of the control experiment did not differ with regard to the mean accuracy or the mean reaction times, both ts <1. We therefore suggest that these null-effects of the occluder manipulation on the overall performance are likely attributable to the complex stimulus materials and the resulting quite long response times (on average >1900 ms).

  2. Interestingly, the introduction of a transparent barrier revealed no different effects on visuotactile interactions as compared to a condition without a barrier in the crossmodal congruency task (e.g., Kitagawa & Spence, 2005; see also Farnè, Demattè, & Làdavas, 2003). In a nutshell, one may conclude that congruency across modalities is differently affected by higher-order cognition than selection within a modality.

References

  • Allport, D. A. (1987). Selection-for-action: Some behavioral and neurophysiological considerations of attention and action. In H. Heuer & A. F. Sanders (Eds.), Perspectives on perception and action (pp. 395–419). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.

    Article  Google Scholar 

  • Bates, D., Maechler, M., Bolker, B., & Walker, S. (2013). lme4: Linear mixed-effects models using Eigen and S4. R package version 1.0-5. http://CRAN.R-project.org/package=lme4

  • Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391, 756. doi:10.1038/35784

    Article  PubMed  Google Scholar 

  • Bregman, A. S. (1990). Auditory scene analysis: The perceptual organization of sound. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cardini, F., Longo, M. R., Driver, J., & Haggard, P. (2012). Rapid enhancement of touch from non-informative vision of the hand. Neuropsychologia, 50, 1954–1960. doi:10.1016/j.neuropsychologia.2012.04.020

    Article  PubMed Central  PubMed  Google Scholar 

  • Craig, J. C. (1974). Vibrotactile difference thresholds for intensity and the effect of a masking stimulus. Perception & Psychophysics, 15, 123–127. doi:10.3758/bf03205839

    Article  Google Scholar 

  • Craig, J. C. (1995). Vibrotactile masking: The role of response competition. Perception & Psychophysics, 57, 1190–1200. doi:10.3758/bf03208375

    Article  Google Scholar 

  • Dixon, P. (2008). Models of accuracy in repeated-measures designs. Journal of Memory and Language, 59, 447–456.

    Article  Google Scholar 

  • Driver, J., & Baylis, G. C. (1989). Movement and visual attention: The spotlight metaphor breaks down. Journal of Experimental Psychology: Human Perception and Performance, 15, 448–456. doi:10.1037/0096-1523.15.3.448

    PubMed  Google Scholar 

  • Driver, J., & Grossenbacher, P. G. (1996). Multimodal spatial constraints on tactile selective attention. In T. Innui & J. I. McClelland (Eds.), Attention and performance XVI: Information integration in perception and communication (pp. 209–235). Cambridge, MA: MIT Press.

    Google Scholar 

  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16, 143–149. doi:10.3758/bf03203267

    Article  Google Scholar 

  • Evans, P. M., & Craig, J. C. (1992). Response competition: A major source of interference in a tactile identification task. Perception & Psychophysics, 51, 199–206. doi:10.3758/bf03212244

    Article  Google Scholar 

  • Farnè, A., Demattè, M. L., & Làdavas, E. (2003). Beyond the window: Multisensory representation of peripersonal space across a transparent barrier. International Journal of Psychophysiology, 50, 51–61. doi:10.1016/S0167-8760(03)00124-7

    Article  PubMed  Google Scholar 

  • Frings, C., & Spence, C. (2010). Crossmodal congruency effects based on stimulus identity. Brain Research, 1354, 113–122. doi:10.1016/j.brainres.2010.07.058

    Article  PubMed  Google Scholar 

  • Frings, C., & Spence, C. (2011). Increased perceptual and conceptual processing difficulty makes the immeasurable measurable: Negative priming in the absence of probe distractors. Journal of Experimental Psychology: Human Perception and Performance, 37, 72–84. doi:10.1037/a0020673

    PubMed  Google Scholar 

  • Frings, C., & Spence, C. (2013). Gestalt grouping effects on tactile information processing: When touching hands override spatial proximity. Attention, Perception, & Psychophysics, 75, 468–480. doi:10.3758/s13414-012-0417-6

    Article  Google Scholar 

  • Gallace, A., & Spence, C. (2005). Visual capture of apparent limb position influences tactile temporal order judgments. Neuroscience Letters, 379, 63–68. doi:10.1016/j.neulet.2004.12.052

  • Gallace, A., & Spence, C. (2011). To what extent do Gestalt grouping principles influence tactile perception? Psychological Bulletin, 137, 538–561. doi:10.1037/a0022335

    Article  PubMed  Google Scholar 

  • Gallace, A., & Spence, C. (2014). In touch with the future: The sense of touch from cognitive neuroscience to virtual reality. Oxford, UK: Oxford University Press.

    Book  Google Scholar 

  • Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

    Google Scholar 

  • Jaeger, T. F. (2008). Categorical data analysis: Away from ANOVAs (transformation or not) and towards Logit Mixed Models. Journal of Memory and Language, 59, 434–446.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kennett, S., Taylor-Clarke, M., & Haggard, P. (2001). Noninformative vision improves the spatial resolution of touch in humans. Current Biology, 11, 1188–1191. doi:10.1016/S0960-9822(01)00327-X

    Article  PubMed  Google Scholar 

  • Kitagawa, N., & Spence, C. (2005). Investigating the effect of a transparent barrier on the crossmodal congruency effect. Experimental Brain Research, 161, 62–71. doi:10.1007/s00221-004-2046-3

    Article  PubMed  Google Scholar 

  • Lamers, M. J. M., & Roelofs, A. (2007). Role of Gestalt grouping in selective attention: Evidence from the Stroop task. Perception & Psychophysics, 69, 1305–1314. doi:10.3758/BF03192947

    Article  Google Scholar 

  • Meegan, D. V., & Tipper, S. P. (1999). Visual search and target-directed action. Journal of Experimental Psychology: Human Perception and Performance, 25, 1347–1362. doi:10.1037/0096-1523.25.5.1347

    Google Scholar 

  • Overvliet, K. E., Krampe, R. T., & Wagemans, J. (2012). Perceptual grouping in haptic search: The influence of proximity, similarity, and good continuation. Journal of Experimental Psychology: Human Perception and Performance, 38, 817–821.

    PubMed  Google Scholar 

  • R Core Team (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Spence, C., & Gallace, A. (2007). Recent developments in the study of tactile attention. Canadian Journal of Experimental Psychology, 61, 196–207. doi:10.1037/cjep2007021

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Lloyd, D., Shorland, B., Dancer, C., Howard, L. A., & McGlone, F. (1998). Vision influences tactile perception without proprioceptive orienting. Neuroreport, 9, 1741–1744. doi:10.1097/00001756-199806010-00013

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Phillips, N., Dancer, C., Lloyd, D., Howard, L. A., & McGlone, F. (2001). Vision influences tactile perception at body sites that cannot be viewed directly. Experimental Brain Research, 139, 160–167. doi:10.1007/s002210100743

    Article  PubMed  Google Scholar 

  • Tipper, S. P., Meegan, D., & Howard, L. A. (2002). Action-centred negative priming: Evidence for reactive inhibition. Visual Cognition, 9, 591–614. doi:10.1080/13506280143000593

    Article  Google Scholar 

  • Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Addison-Wesley.

    Google Scholar 

  • von Ehrenfels, C. F. (1890). Ueber Gestaltqualitaeten [On the qualities of form]. Vierteljahresschrift für wissenschaftliche Philosophie, 14, 249–292.

    Google Scholar 

  • Wertheimer, M. (1912). Experimentelle Studien ueber das Sehen von Bewegung [Experimental studies on the visual perception of movement]. Zeitschrift für Psychologie, 61, 161–265.

    Google Scholar 

  • Wesslein, A. K., Spence, C., & Frings, C. (2014). When vision influences the invisible distractor: Tactile response compatibility effects require vision. Journal of Experimental Psychology: Human Perception and Performance, 40, 763–774. doi:10.1037/a0035047

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann-Katrin Wesslein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesslein, AK., Spence, C. & Frings, C. You can’t ignore what you can’t separate: the effect of visually induced target-distractor separation on tactile selection. Psychon Bull Rev 22, 728–736 (2015). https://doi.org/10.3758/s13423-014-0738-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/s13423-014-0738-7

Keywords

Navigation