Skip to main content
Log in

Viewpoint-invariant and viewpoint-dependent object recognition in dissociable neural subsystems

  • Brief Reports
  • Published:
Psychonomic Bulletin & Review Aims and scope Submit manuscript

Abstract

Participants viewed objects in the central visual field and then named either same or different depth-orientation views of these objects presented briefly in the left or the right visual field. The different-orientation views contained either the same or a different set of parts and relations. Viewpoint-dependent priming was observed when test views were presented directly to the right hemisphere (RH), but not when test views were presented directly to the left hemisphere (LH). Moreover, this pattern of results did not depend on whether the same or a different set of parts and relations could be recovered from the different-orientation views. Results support the theory that a specific subsystem operates more effectively than an abstract subsystem in the RH and stores objects in a manner that produces viewpoint-dependent effects, whereas an abstract subsystem operates more effectively than a specific subsystem in the LH and does not store objects in a viewpoint-dependent manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Ballard, D. H. (1986). Cortical connections and parallel processing: Structure and function.Behavioral & Brain Sciences,9, 67–120.

    Google Scholar 

  • Bartram, D. J. (1976). Levels of coding in picture-picture comparison tasks.Memory & Cognition,4, 593–602.

    Google Scholar 

  • Biederman, I. (1987). Recognition-by-components: A theory of human image understanding.Psychological Review,94, 115–147.

    PubMed  Google Scholar 

  • Biederman, I., &Cooper, E. E. (1991). Priming contour-deleted images: Evidence for intermediate representations in visual object recognition.Cognitive Psychology,23, 393–419.

    PubMed  Google Scholar 

  • Biederman, I., &Gerhardstein, P. C. (1993). Recognizing depthrotated objects: Evidence and conditions for three-dimensional viewpoint invariance.Journal of Experimental Psychology: Human Perception & Performance,19, 1162–1182.

    Google Scholar 

  • Biederman, I., &Gerhardstein, P. C. (1995). Viewpoint-dependent mechanisms in visual object recognition: Reply to Tarr and Bülthoff (1995).Journal of Experimental Psychology: Human Perception & Performance,21, 1506–1514.

    Google Scholar 

  • Bülthoff, H. H., &Edelman, S. (1992). Psychophysical support for a two-dimensional view interpolation theory of object recognition.Proceedings of the National Academy of Sciences,89, 60–64.

    Google Scholar 

  • Burgund, E. D., &Marsolek, C. J. (1997). Letter-case-specific priming in the right cerebral hemisphere with a form-specific perceptual identification task.Brain & Cognition,35, 239–258.

    Google Scholar 

  • Burgund, E. D., &Marsolek, C. J. (1999a).Separable mechanisms for initial storage of unfamiliar three-dimensional objects. Manuscript submitted for publication.

  • Burgund, E. D., &Marsolek, C. J. (1999b).When planar reorientations do and do not affect priming for unfamiliar objects. Manuscript submitted for publication.

  • Churchland, P. S., &Sejnowski, T. J. (1992).The computational brain. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cohen, J., MacWhinney, B., Flatt, M., &Provost, J. (1993). PsyScope: An interactive graphic system for designing and controlling experiments in the psychology laboratory using Macintosh Computers.Behavioral Research Methods, Instruments, & Computers,25, 257–271.

    Google Scholar 

  • Cohen, N. J., &Eichenbaum, H. (1993).Memory, amnesia, and the hippocampal system. Cambridge, MA: MIT Press.

    Google Scholar 

  • Cooper, L. A., Schacter, D. L., Ballesteros, S., &Moore, C. (1992). Priming and recognition of transformed three-dimensional objects: Effects of size and reflection.Journal of Experimental Psychology: Learning, Memory, & Cognition,18, 43–57.

    Google Scholar 

  • Edelman, S. (1998). Representation is representation of similarities.Behavioral & Brain Sciences,21, 449–498.

    Google Scholar 

  • Edelman, S., &Bülthoff, H. H. (1992). Orientation dependence in the recognition of familiar and novel views of three-dimensional objects.Vision Research,32, 2385–2400.

    PubMed  Google Scholar 

  • Ellis, R., &Allport, D. A. (1986). Multiple levels of representation for visual objects: A behavioural study. In A. G. Cohen & J. R. Thomas (Eds.),Artificial intelligence and its applications (pp. 245–257). New York: Wiley.

    Google Scholar 

  • Ellis, R., Allport, D. A., Humphreys, G. W., &Collis, J. (1989). Varieties of object constancy.Quarterly Journal of Experimental Psychology,41A, 775–796.

    Google Scholar 

  • Farah, M. J. (1990).Visual agnosia: Disorders of object recognition and what they tell us about normal vision. Cambridge, MA: MIT Press.

    Google Scholar 

  • Farah, M. J. (1991). Patterns of co-occurrence among the associative agnosias: Implications for visual object representation.Cognitive Neuropsychology,8, 1–19.

    Google Scholar 

  • Farah, M. J. (1992). Is an object an object an object? Cognitive and neuropsychological investigations of domain specificity in visual object recognition.Current Directions in Psychological Science,1, 164–169.

    Google Scholar 

  • Gauthier, I., &Tarr, M. J. (1997). Becoming a “greeble” expert: Exploring mechanisms for face recognition.Vision Research,37, 1673–1682.

    PubMed  Google Scholar 

  • Hayward, W. G. (1998). Effects of outline in object recognition.Journal of Experimental Psychology: Human Perception & Performance,24, 427–440.

    Google Scholar 

  • Hayward, W. G., &Tarr, M. J. (1997). Testing conditions for viewpoint invariance in object recognition.Journal of Experimental Psychology: Human Perception & Performance,23, 1511–1521.

    Google Scholar 

  • Hinton, G. E., McClelland, J. L., &Rumelhart, D. E. (1986). Distributed representations. In D. E. Rumelhart, J. L. McClelland, & the PDP Research Group (Eds.),Parallel distributed processing: Explorations in the microstructure of cognition. Vol. 1: Foundations (pp. 77–109). Cambridge, MA: MIT Press.

    Google Scholar 

  • Hummel, J. E., &Biederman, I. (1992). Dynamic binding in a neural network for shape recognition.Psychological Review,99, 480–517.

    PubMed  Google Scholar 

  • Hummel, J. E., &Stankiewicz, B. J. (1996). Categorical relations in shape perception.Spatial Vision,10, 201–236.

    PubMed  Google Scholar 

  • Hummel, J. E., &Stankiewicz, B. J. (1998). Two roles for attention in shape perception: A structural description model for visual scrutiny.Visual Cognition,5, 49–79.

    Google Scholar 

  • Humphrey, G. K., &Jolicoeur, P. (1993). An examination of the effects of axis foreshortening, monocular depth cues, and visual field on object identification.Quarterly Journal of Experimental Psychology,46A, 137–159.

    Google Scholar 

  • Humphrey, G. K., &Khan, S. C. (1992). Recognizing novel views of three-dimensional objects.Canadian Journal of Psychology,46, 170–190.

    PubMed  Google Scholar 

  • Humphreys, G. W., &Riddoch, M. J. (1984). Routes to object constancy: Implications from neurological impairments of object constancy.Quarterly Journal of Experimental Psychology,36A, 385–415.

    Google Scholar 

  • Jolicoeur, P. (1990). Identification of disoriented objects: A dualsystems theory.Mind & Language,5, 387–410.

    Google Scholar 

  • Koenderink, J. J. (1987). An internal representation for solid shape based on the topological properties of the apparent contour. In W. Richards & S. Ullman (Eds.),Image understanding 1985–86 (pp. 257–285). Norwood, NJ: Ablex.

    Google Scholar 

  • Lawson, R., &Humphreys, G. W. (1996). View specificity in object processing: Evidence from picture matching.Journal of Experimental Psychology: Human Perception & Performance,22, 395–416.

    Google Scholar 

  • Lawson, R., &Humphreys, G. W. (1998). View-specific effects of depth rotation and foreshortening on the initial recognition and priming of familiar objects.Perception & Psychophysics,60, 1052–1066.

    Google Scholar 

  • Logothetis, N. K., &Sheinberg, D. L. (1996). Visual object recognition.Annual Review of Neuroscience,19, 577–621.

    PubMed  Google Scholar 

  • Marr, D. (1982).Vision. San Francisco: Freeman.

    Google Scholar 

  • Marsolek, C. J. (1995). Abstract-visual-form representations in the left cerebral hemisphere.Journal of Experimental Psychology: Human Perception & Performance,21, 375–386.

    Google Scholar 

  • Marsolek, C. J. (1999). Dissociable neural subsystems underlie abstract and specific object recognition.Psychological Science,10, 111–118.

    Google Scholar 

  • Marsolek, C. J., &Burgund, E. D. (1997). Computational analyses and hemispheric asymmetries in visual-form recognition. In S. Christman (Ed.),Cerebral asymmetries in sensory and perceptual processing (pp. 125–158). Amsterdam: Elsevier.

    Google Scholar 

  • Marsolek, C. J., &Hudson, T. E. (1999). Task and stimulus demands influence letter-case specific priming in the right cerebral hemisphere.Laterality,4, 127–147.

    PubMed  Google Scholar 

  • Marsolek, C. J., Schacter, D. L., &Nicholas, C. D. (1996). Formspecific visual priming for new associations in the right cerebral hemisphere.Memory & Cognition,24, 539–556.

    Google Scholar 

  • McClelland, J. L., McNaughton, B. L., &O’Reilly, R. C. (1995). Why there are complementary learning systems in the hippocampus and neocortex: Insights from the successes and failures of connectionist models of learning and memory.Psychological Review,102, 419–457.

    PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory.Neuropsychologia,9, 97–113.

    Google Scholar 

  • Palmer, S., Rosch, E., &Chase, P. (1981). Canonical perspective and the perception of objects. In J. [B.] Long & A. [D.] Baddeley (Eds.),Attention and performance IX (pp. 135–151). Hillsdale, NJ: Erlbaum.

    Google Scholar 

  • Poggio, T., &Edelman, S. (1990). A network that learns to recognize three-dimensional objects.Nature,343, 263–266.

    PubMed  Google Scholar 

  • Poggio, T. A., &Hurlbert, A. (1994). Observations on cortical mechanisms for object recognition and learning. In C. Koch & J. L. Davis (Eds.),Large-scale neuronal theories of the brain (pp. 153–182). Cambridge, MA: MIT Press.

    Google Scholar 

  • Rock, I., &DiVita, J. (1987). A case of viewer-centered object perception.Cognitive Psychology,19, 280–293.

    PubMed  Google Scholar 

  • Squire, L. R. (1992). Memory and the hippocampus: A synthesis from findings with rats, monkeys, and humans.Psychological Review,99, 195–231.

    PubMed  Google Scholar 

  • Srinivas, K. (1993). Perceptual specificity in nonverbal priming.Journal of Experimental Psychology: Learning, Memory, & Cognition,19, 582–602.

    Google Scholar 

  • Srinivas, K. (1995). Representation of rotated objects in explicit and implicit memory.Journal of Experimental Psychology: Learning, Memory, & Cognition,21, 1019–1036.

    Google Scholar 

  • Tanaka, J. W., &Sengco, J. A. (1997). Features and their configuration in face recognition.Memory & Cognition,25, 583–592.

    Google Scholar 

  • Tanaka, K. (1993). Neuronal mechanisms of object recognition.Science,262, 685–688.

    PubMed  Google Scholar 

  • Tarr, M. J. (1995). Rotating objects to recognize them: A case study on the role of viewpoint dependency in the recognition of three-dimensional objects.Psychonomic Bulletin & Review,2, 55–82.

    Google Scholar 

  • Tarr, M. J., &Bülthoff, H. H. (1995). Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993).Journal of Experimental Psychology: Human Perception & Performance,21, 1494–1505.

    Google Scholar 

  • Tarr, M. J., Bülthoff, H. H., Zabinski, M., &Blanz, V. (1997). To what extent do unique parts influence recognition across changes in viewpoint?Psychological Science,8, 282–289.

    Google Scholar 

  • Ullman, S. (1989). Aligning pictorial descriptions: An approach to object recognition.Cognition,32, 193–254.

    PubMed  Google Scholar 

  • Ullman, S. (1996).High-level vision: Object recognition and visual cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Verfaillie, K., &Boutsen, L. (1995). A corpus of 714 full-color images of depth-rotated objects.Perception & Psychophysics,57, 925–961.

    Google Scholar 

  • Wagemans, J., Gool, L., &Lamote, C. (1996). The visual system’s measurement of invariants need not itself be invariant.Psychological Science,7, 232–236.

    Google Scholar 

  • Warrington, E. K., &Taylor, A. M. (1978). Two categorical stages of object recognition.Perception,7, 695–705.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Darcy Burgund.

Additional information

Parts of this research were reported earlier at the Annual Meeting of the Cognitive Neuroscience Society, San Francisco (1998). Funding for this work came from the Center for Cognitive Sciences in conjunction with the National Science Foundation (GER 9454163), the Office of the Vice President for Research, and Dean of the Graduate School of the University of Minnesota. In addition, we thank Beth Lavin and the Summer Research Experience for Undergraduates program, Center for Cognitive Sciences, University of Minnesota, as well as Jeremy Blessing, Lorien Parson, Kelly Pucel, Anna Shier, and Brett Stephan for their assistance with data collection and analysis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burgund, E.D., Marsolek, C.J. Viewpoint-invariant and viewpoint-dependent object recognition in dissociable neural subsystems. Psychon Bull Rev 7, 480–489 (2000). https://doi.org/10.3758/BF03214360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3758/BF03214360

Keywords

Navigation