Skip to main content
Log in

Quality of the locomotion system in planetary rovers

  • Published:
Russian Engineering Research Aims and scope

Abstract

Methods that take account of the properties of the propulsion system and the terrain (along with their interactions) are outlined, for use in quality assessment of the locomotion system in planetary rovers in which wheels with individual electromechanical drives are mounted on a self-propelled chassis. Criteria for optimization of rigid metal wheels are determined, and selection criteria for balanced suspension systems are established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bekker, M.G., Introduction to the Theory of Terrain–Machine Systems, Ann Arbor: Univ. of Michigan, 1969.

    Google Scholar 

  2. Anisov, K.S., Mastakov, V.I., Ivanov, O.G., et al., The lay-out and operation of the Luna-17 station and Lunokhod-1, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (The Moon Mobile Laboratory Lunokhod-1), Vinogradova, A.P., Ed., Moscow: Nauka, 1971, vol. 1, pp. 7–20.

    Google Scholar 

  3. Leontovich, A.K., Ivanov, O.G., Pavlov, P.S., et al., Self-propelled chassis of Lunokhod-1 as a tool for study of the lunar surface, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (The Moon Mobile Laboratory Lunokhod-1), Barsukov, V.L., Ed., Moscow: Nauka, 1978, vol. 2, pp. 25–42.

    Google Scholar 

  4. Avotin’sh, E.V., Borodachev, B.V., Vasin, Yu.I., et al., Analysis of work performance of self-propelled chassis on the Moon, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (The Moon Mobile Laboratory Lunokhod-1), Barsukov, V.L., Ed., Moscow: Nauka, 1978, vol. 2, pp. 47–66.

    Google Scholar 

  5. Kemurdjian, A.L., Gromov, V.V., Cherkasov, I.I., and Shvarev, V.V., Avtomaticheskie stantsii dlya izucheniya poverkhnostnogo pokrova Luny (Automation Stations for Study of the Moon Surface), Moscow: Mashinostroenie, 1976, pp. 103–199.

    Google Scholar 

  6. Malenkov, M.I. and Kemurdjian, A.L., Tractive dynamics of the planetary rover, in Dinamika planetokhoda (Dynamics of a Planetary Rover), Petrov, B.N. and Kemurdjian, A.L., Eds., Moscow: Nauka, 1979, pp. 56–195.

    Google Scholar 

  7. Kemurdjian, A.L., From the Moon rover to the Mars rover, Planet. Rep., 1990, vol. 10, no. 4, pp. 4–11.

    Google Scholar 

  8. Malenkov, M.I., Creation of Lunokhod-1 as an outstanding scientific and technological achievement of the XX century, Sol. Syst. Res., 2013, vol. 47, no. 7, pp. 610–617.

    Article  Google Scholar 

  9. Malenkov, M., Self-propelled automatic chassis of Lunokhod-1: history of creation in episodes, Front. Mech. Eng., 2016, vol. 11, no. 1, pp. 60–86.

    Article  Google Scholar 

  10. Zhang, Y.H., Xiao, J., Zhang, X.W., et al., Design and implementation of Chang’E-3 rover location system, Sci. Chin., Technol. Sci., 2014, vol. 44, no. 5, pp. 483–491.

    MathSciNet  Google Scholar 

  11. Basilevsky, A.T., Abdrahimov, A.M., Head, J.W., et al., Geologic characteristics of the Luna 17/Lunokhod-1 and Chang’E-3/Yutu landing sites, northwest Mare Imbrium of the Moon, Planet. Space Sci., 2015, vol. 117, pp. 385–400.

    Article  Google Scholar 

  12. Herkenhoff, K.E., Golombek, M.P., Guinness, E.A., et al., In situ observations of the physical properties of the Martian surface, in The Martian Surface: Composition, Mineralogy, and Physical Properties, Bell, J.F., Ed., Cambridge: Cambridge Univ. Press, 2008, pp. 451–467.

    Chapter  Google Scholar 

  13. Kazhukalo, I.F., Walking principle in the propulsion systems of transport machines: hybrid wheel-walking propulsion systems, in Planetokhody (Planetary Rovers), Kemurdjian, A.L., Ed., Moscow: Mashinostroenie, 1982, pp. 65–107.

    Google Scholar 

  14. Kazhukalo, I.F., Malenkov, M.I., and Kemurdjian, A.L., Description and some results of the walking principles of the planetary rover tests, in Peredvizhenie po gruntam Luny i planet (Locomotion on the Grounds of the Moon and Planets), Kemurdjian, A.L., Moscow: Mashinostroenie, 1986, pp. 235–261.

    Google Scholar 

  15. Malenkov, M.I., Volov, V.A., Guseva, N.K., and Lazarev, E.A., Increasing the mobility of Mars rovers by improving the locomotion systems and their control algorithms, Russ. Eng. Res., 2015, vol. 35, no. 11, pp. 824–831.

    Article  Google Scholar 

  16. Harrington, B.D. and Voorhees, C., The challenges of designing the rocker–bogie suspension for the Mars exploration rover, Proc. 37th Aerospace Mechanisms Symp., Johnson Space Center, May 19–21, 2004, Galveston, TX, 2004.

    Google Scholar 

  17. MSL Curiosity Rover. http://mars.jpl.nasa.gov/msl.

  18. Mars Exploration Rovers. http://marsrover.nasa.gov/science/objectives.html.

  19. Kucherenko, V., Bogatchev, A., and Winnendael, M., Chassis concepts for ExoMars rover, Proc. 8th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), Noordwijk: Eur. Space Res. Technol. Centre, 2004.

    Google Scholar 

  20. Lee, C.G.-Y., Dalcolmo, J., Klinkner, S., et al., Design and manufacture of a full size breadboard ExoMars rover chassis, Proc. 9th ESA Workshop on Advanced Space Technologies for Robotics and Automation (ASTRA), Noordwijk: Eur. Space Res. Technol. Centre, 2006.

    Google Scholar 

  21. Apostolopoulos, D., Analytical configuration of wheeled robotic locomotion, Ph.D. Thesis, Pittsburgh, PA: Carnegie-Mellon Univ., 2001.

    Google Scholar 

  22. Thüer, T., Mobility evaluation of wheeled all-terrain robots. Metrics and application, PhD Dissertation, Zurich, 2009.

    Google Scholar 

  23. Naumov, V.N. and Zabavnikov, N.A., Interaction of the single wheel with the ground in relation to the evaluation of transport vehicle terrain, in Peredvizhenie po gruntam Luny i planet (Locomotion on the Grounds of the Moon and Planets), Kemurdjian, A.L., Moscow: Mashinostroenie, 1986, pp. 53–107.

    Google Scholar 

  24. RF Patent 2016114958, 2016 (unpublished).

  25. Bechvai, N.E., Gromov, V.V., Egorov, A.I., Kuzhukalo, I.F., Kemurdjian, A.L., Komissarov, V.I., Korepanov, G.N., Mitin, B.V., Mishkinyuk, V.K., Sologub, P.S., and Shvartsburg, M.B., USSR Inventor’s Certificate no. 272076, 1970.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Malenkov.

Additional information

Original Russian Text © M.I. Malenkov, V.A. Volov, E.A. Lazarev, 2016, published in Vestnik Mashinostroeniya, 2016, No. 7, pp. 6–13.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malenkov, M.I., Volov, V.A. & Lazarev, E.A. Quality of the locomotion system in planetary rovers. Russ. Engin. Res. 36, 800–808 (2016). https://doi.org/10.3103/S1068798X16100129

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068798X16100129

Keywords

Navigation