Skip to main content
Log in

Adsorption of atmospheric carbonate and evolution of acidity during grinding of abnormal montmorillonite

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Montmorillonite (MMt) from Tunisia has been subjected to fine grinding and studied using FTIR spectroscopy, X-ray diffractograms, BET surface area, Brönsted and Lewis acidity analyse, and FTIR spectroscopy. As a result, significant changes in structural vibrations when MMt was mechanochemically treated were revealed. These changes include: a shift and a gradual decrease of structural OH, Si–O, and M–OH groups (M: octahedral cations; Al, Mg and Fe), which means that an imperfection was formed in the crystal mineral via a mechanochemical treatment. The grinding is associated with amelioration of the oxidative power of clay, which is manifested by the sharpening of the infrared absorption shoulder near 880 cm–1. The thermo-FTIR adsorption of N-butylamine showed that acidity did not improve upon grinding. On the contrary, the mechanochemical treatment led to the creation of the basic sites which promote the adsorption of atmospheric dioxide carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drits, V.A., Besson, G., and Muller, F., Clay Clay Miner., 1995, vol. 43, pp. 718–731.

    Article  Google Scholar 

  2. Grim, R.E. and Kulbicki, G., Am. Miner., 1961, vol. 46, pp. 1329–1369.

    Google Scholar 

  3. Bekri-Abbes, I. and Srasra, E., Bull. Mater. Sci., 2006, vol. 29, pp. 251–259.

    Article  Google Scholar 

  4. Bekri-Abbes, I. and Srasra, E., J. Polym. Res., 2011, vol. 18, pp. 691–699.

    Article  Google Scholar 

  5. Bekri-Abbes, I. and Srasra, E., React. Funct. Polym., 2010, vol. 70, pp. 11–18.

    Article  Google Scholar 

  6. Cicel, B. and Kranz, G., Clay Miner., 1981, vol. 16, pp. 151–162.

    Article  Google Scholar 

  7. Mingelgrin, U., Kliger, L., Gal, M., and Saltzman, S., Clay Clay Miner., 1978, vol. 26, pp. 299–307.

    Article  Google Scholar 

  8. Hrachova, J., Madejova, J., Billik, P., and Komadel, P., J. Colloid Interf. Sci., 2007, vol. 316, pp. 589–595.

    Article  Google Scholar 

  9. Ramadan, A.R., Esawi, A.M.K., and Gawad, A.A., Appl. Clay Sci., 2010, vol. 47, pp. 196–202.

    Article  Google Scholar 

  10. Mnasri, S. and Frini-Srasra, N., Infrared Phys. Techn., 2013, vol. 58, pp. 15–20.

    Article  Google Scholar 

  11. Craciun, C., Thermochim. Acta, 1987, vol. 117, pp. 25–36.

    Article  Google Scholar 

  12. Henmi, T. and Yoshinaga, N., Clay Miner., 1981, vol. 1, pp. 139–149.

    Article  Google Scholar 

  13. Cornejo, J. and Hermosin, M.C., Clay Miner., 1988, vol. 23, pp. 391–398.

    Article  Google Scholar 

  14. Rumpf, H. and Schubert, H., Adhesion forces in agglomeration processes, in Ceramic Processing before Firing, Onoda, G. and Hench, L., Eds., New York: Wiley, 1978, pp. 357–376.

  15. Rozenson, I. and Heller-Kallai, L., Clay Clay Miner., 1978, vol. 26, pp. 8–92.

    Google Scholar 

  16. Keller, W.D., Am. Miner., 1955, vol. 40, pp. 348–351.

    Google Scholar 

  17. Mozgawa, W., Krol, M., and Barczy, K., Chemik, 2011, vol. 7, pp. 671–674.

    Google Scholar 

  18. Freund, H.J. and Roberts, M.W., Surf. Sci. Rep., 1996, vol. 25, pp. 225–273.

    Article  Google Scholar 

  19. Chappell, B.W. and White, A.J.R., Pac. Geol., 1974, vol. 8, pp. 173–174.

    Google Scholar 

  20. Melian-Cabrera, I. and Granados, M.L., Phys. Chem. Chem. Phys., 2002, vol. 4, pp. 3122–3127.

    Article  Google Scholar 

  21. Hibino, T., Yamashita, Y., Kosuge, K., and Tsunashim, A., Clay Clay Miner., 1995, vol. 43, pp. 427–432.

    Article  Google Scholar 

  22. Kalinkina, E.V., Kalinkin, A.M., Forsling, W., and Makarov, V.N., Int. J. Miner. Process., 2001, vol. 61, pp. 273–288.

    Article  Google Scholar 

  23. Karickhoff, S.W. and Bailey, G.W., Clay Clay Miner., 1976, vol. 24, pp. 170–176.

    Article  Google Scholar 

  24. Poli, L., Batista, T., Schmitt, C.C., Gessner, F., and Neumann, M.G., J. Colloid Interf. Sci., 2008, vol. 325, pp. 386–390.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bekri-Abbes.

Additional information

The article is published in the original.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bekri-Abbes, I., Srasra, E. Adsorption of atmospheric carbonate and evolution of acidity during grinding of abnormal montmorillonite. Surf. Engin. Appl.Electrochem. 52, 449–455 (2016). https://doi.org/10.3103/S1068375516050045

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375516050045

Keywords

Navigation