Skip to main content
Log in

Milk for humans: Evolving perceptions of an all-time mother science

  • Animal Husbandry
  • Published:
Russian Agricultural Sciences Aims and scope

Abstract

Milk is the most nourishing natural biofluid and almost an ideal functional food for humans of all ages. The objective of this review article is to delineate global nutritional and health implications of main live-stock dairy products for optimum postmodern life quality. Milk bioactives contribute considerably to meeting nutrient requirements while offering potentials to reduce risks of cancers, traumas and metabolic disorders. Milk functions beyond its nutritive worth. Cow milk intake by lactating mothers enriches breast milk β-lactoglobulin and ovalbumin. Milk intake leads to more standard body frame structure and bone health. Milk immunoglobulins act against Enterotoxigenic Escherichia coli. Casomorphins, immunostimulating peptides, and ACE-inhibitory peptides modulate the gut nutrient assimilation. Whey proteins are insulinotropic and medium chain fatty acids improve insulin action. Peptides along with calcium may reduce blood pressure and cholesterol. Milk improves folate availability, and reduces homocysteinemia and heart infarcts. Ewe milk is richer than cow milk in riboflavin, thiamine, niacin, pantothenic acid, vitamin B6, vitamin B12 and biotin. Goat milk has less α-s-1-casein, β-carotene, agglutinin; and is lower in citric acid, Na, Fe, S, Zn, Mo, ribonuclease, alkaline phosphatase, lipase, xanthine oxidase, N-acetylneuraminic acid, orotic acid, pyridoxine, folate, vitamin B12, and vitamin C than cow milk. Goat milk is richer in Ca, K, Mg, P, Cl, Mn, vitamins A and D, nicotinic acid, choline, inositol, medium-chain FA, small diameter fat globules than cow milk. Goat milk is a suitable substitute in allergies, and with low orotic acid might prevent fatty liver. Lysozyme-rich milk has been produced with transgenic dairy goats to prevent intestinal disorders in infants. Donkey and horse milks are considered optimal substitutes for human and cow milk in minimizing allergies and hyperlipidemia related complexities. Effective education and data dissemination are the ongoing obligations for unbiased milk science to be adequately perceived and applied by postmodern human populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ademosun, A.A., Bosman, H.G., Haenlein, G.F.W., and Adebowale, E.A., Recent Advances in Nutrient Requirements of Goats, Proc. Fifth Intern. Conf. Goats, New Delhi, India, ICAR, 1992.

  2. Ahrne, L., Bjoerck, L., Raznikiewicz, T., and Claesson, O., Glycerol Ether in Colostrum and Milk from Cow, Goat Pig, and Sheep, J. Dairy Sci., 1980, vol. 63, pp. 741–745.

    Article  CAS  Google Scholar 

  3. Akhundov, A.A., Dyrdyev, B., and Serebryakov, E.R., Effect of Combined Treatment on Water Electrolyte Exchange in Pulmonary TBC Patients, Zdravookhr. Turkm., 1972, vol. 16, pp. 40–44.

    Google Scholar 

  4. Al-Hashem, F., Dallak, M., Bashir, N., Abbas, M., Elessa, R., Khalil, M., and Al-Khateeb, M., Camel’s Milk Protects Against Cadmium Chloride Induced Toxicity in White Albino Rats, Am. J. Pharmacol. Toxicol., 2009, vol. 4, no. 3, pp. 107–117.

    CAS  Google Scholar 

  5. Amati, L., Marzulli, G., Martulli, M., Tafaro, A., Jirillo, F., Pugliese, V., Martemucci, G., D’Alessandro, A.G., and Jirillo, E., Donkey and Goat Milk Intake and Modulation of the Human Aged Immune Response, Curr. Pharmaceutical Design, 2010, vol. 16, pp. 864–869.

    Article  CAS  Google Scholar 

  6. Ambrosoli, R., Di Stasio, L., and Mazzocco, P., Content of Alpha-s-1 Casein and Coagulation Properties in Goat Milk, J. Dairy Sci., 1988, vol. 71, pp. 24–28.

    Article  PubMed  CAS  Google Scholar 

  7. Bakka, H., Steine, S. T., and Eggum, A., Flavor Score and Content of Free Fatty Acids in Goat Milk, Acta Agriculturae Scandinavica, 1977, vol. 27, pp. 245–249.

    Article  Google Scholar 

  8. Ballestra, F., Process for Conservation of Donkey Milk and Its Application in the Pharmaceutical and Cosmetic Industry, French Patent Application FR 2 707 877 Al. 6, 1995.

  9. Bauman, D.E., Mather, I.H., Wall, R.J., and Lock, A.L., Major Advances Associated with the Biosynthesis of Milk, J. Dairy Sci., 2006, vol. 89, pp. 1235–1243.

    Article  PubMed  CAS  Google Scholar 

  10. Beg, O.U., von-Bahr-Lindststrom, H., Zaidi, Z.H., and Jornvall, H., Characterisation of Camel Milk Protein Rich Proline Identifies a New Beta Casein Fragment, Regulatory Peptides, 1986, vol. 15, pp. 55–62.

    Article  PubMed  CAS  Google Scholar 

  11. Black, R.E., Williams, S.M., Jones, I.E., and Goulding, A., Children Who Avoid Drinking Cow Milk Have Low Dietary Calcium Intakes and Poor Bone Health, Am. J. Clin. Nutrition, 2002, vol. 76, pp. 675–680.

    CAS  Google Scholar 

  12. Businco, L., Giampietro, P.G., Lucenti, P., Lucaroni, F., Pini, C., Di Felice, D., Iacovacci, P., Curadi, C., and Orlandi, M., Allergenicity of Mare’s Milk in Children with Cow’s Milk Allergy, J. Allergy Clin. Immunol., 2000, vol. 105, pp. 1031–1034.

    Article  PubMed  CAS  Google Scholar 

  13. Carroccio, A., Cavataio, F., Montaldo, G.D., Amico, D., Alabrese, L., and Iacono, G., Intolerance to Hydrolyzed Cow’s Milk Protein in Infants: Clinical Characteristics and Dietary Treatment, Clin. Experim. Allergy, 2000, vol. 30, pp. 1597–1603.

    CAS  Google Scholar 

  14. Chilliard, Y., Ferlay, A., Rouel, J., and Lambere, G., A Review of Nutritional and Physiological Factors Affecting Goat Milk Synthesis and Lipolysis, J. Dairy Sci., 2003, vol. 86, pp. 1751–1770.

    Article  PubMed  CAS  Google Scholar 

  15. Chiavari, C., Coloretti, F., Nanni, M., Sorrentino, E., and Grazia, L., Use of Donkey’s Milk for a Fermented Beverage with Lactobacilli, Lait, 2005, vol. 85, pp. 481–490.

    Article  Google Scholar 

  16. Chiofalo, B., Salimei, E., and Chiofalo, L., Ass’s Milk: Exploitation of an Alimentary Resource, Riv. Folium, 2001, vol. 1, no. 3, pp. 235–241.

    Google Scholar 

  17. Csapó, J., Stefler, J., Martin, T.G., Makray, S., and Csapó-Kiss, Zs., Composition of Mares’ Colostrum and Milk. Fat Content, Fatty Acid Composition and Vitamin Content, Int. Dairy J., 1995, vol. 5, pp. 393–402.

    Article  Google Scholar 

  18. Csapó-Kiss, Zs., Stefler, J., Martin, T.G., Makray, S., and Csapó, J., Composition of Mares’ Colostrum and Milk. Protein Content, Amino Acid Composition and contents of Macro and Micro-Elements, Int. Dairy J., 1995, pp. 403–415.

  19. Coppola, R., Salimei, E., Succi, M., Sorrentino, M., Nanni, M., Ranieri, P., Belli, R., Blanes, I., and Grazia, L., Behaviour of Lactobacillus rhamnosus Strains in Ass’s Milk, Annals Microbiol., 2002, vol. 52, pp. 55–60.

    Google Scholar 

  20. Das, U.N., Essential Fatty Acids As Possible Mediators of the Actions of Statins, Prostaglandins Leukot. Essent. Fatty Acids, 2001, vol. 65, no. 1, pp. 37–40.

    Article  PubMed  CAS  Google Scholar 

  21. D’auria, E., Agostini, C., Marcello, G., Rival, E., Zetersro, R., Fortin, R., Franco, G., Bonizzi, L., and Roncada, P., Proteomic Evaluation of Milk from Different Mammalian Species As a Substitute for Breast Milk, Acta Psediatrica, 2005, vol. 94, pp. 1708–1713.

    Article  Google Scholar 

  22. Donnet-Hughes, A., Duc, N., Serrant, P., Vidal, K., and Schiffrin, Ej., Bioactive Molecules in Milk and Their Role in Health and Disease: The Role of Transforming Growth Factor-3, Immunol. Cell Biol., 2000, vol. 78, pp. 74–79.

    Article  PubMed  CAS  Google Scholar 

  23. Doreau, M., Boulot, S., Martin-Rosset, W., and Robelin, J., Milking Lactating Mares Using Oxitocin Milk Volume and Composition, Reproduction Nutrition Development, 1986, vol. 26, pp. 1–11.

    Article  CAS  Google Scholar 

  24. Recommended Intakes for Individuals, Food and Nutrition Board, in DRI: Dietary Reference Intakes, D.C. USA, Washington: National Academy of Sciences, National Academies, Institute of Medicine, 2007.

    Google Scholar 

  25. Droke, E.A., Paape, M.J., and Di Carlo, A.L., Prevalence of High Somatic Cell Counts in Bulk Tank Goat Milk, J. Dairy Sci., 1993, vol. 76, pp. 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  26. El-Agamy, E.I., Immunological Characterization of Goat Milk Proteins with Respect to Human Health and Nutrition, Small Ruminant Res., 2007, vol. 68, pp. 64–72.

    Article  Google Scholar 

  27. Fantuz, F., Vincenzetti, S., Polidori, P., Vita, A., Polidori, F., and Salimei, E., Study on the Protein Fractions of Donkey Milk, Proc. of the ASPA Congress, Firenze, 2001, pp. 635–637.

  28. Food and Agriculture Organization (FAO), in Production Year Book, Food and Agric, Organiz. of the United Nations, 1994, Statistical Series no. 117, vol. 47, p. 254.

  29. FAO (Food and Agriculture Organization of the United Nations), 2005, FAO STAT Data, http://faostat.fao.org.

  30. Farah, Z., Rettenmaier, R., and Atkins, D., Vitamin Content of Camel Milk, Int. J. Vitamin Nutrition Res., 1992, vol. 62, pp. 30–33.

    CAS  Google Scholar 

  31. Fukushima, Y., Kawata, Y., Onda, T., and Kitagawa, M., Consumption of Cow Milk and Egg by Lactating Women and the Presence of Beta-Lactoglobulin and Ovalbumin in Breast Milk, Am. J. Clin. Nutrition, 1997, vol. 65, pp. 30–35.

    CAS  Google Scholar 

  32. Gao, Z., Yin, J., Zhang, J., Ward, R.E., Martin, R.J., and Lefevre, M., Butyrate Improves Insulin Sensitivity and Increases Energy Expenditure in Mice Diabetes, Diabetes, 2009, vol. 58, pp. 1509–1515.

    Article  PubMed  CAS  Google Scholar 

  33. Gerstein, H.C., Cow’s Milk Exposure and Type I Diabetes Mellitus: a Critical Overview of the Clinical Literature, Diabetes Care, 1994, vol. 17, pp. 13–19.

    Article  PubMed  CAS  Google Scholar 

  34. Golay, A., Cholesterol-Lowering Effect of Skim Milk from Immunized Cows in Hypercholesterolemic Patients, Am. J. Clin. Nutrition, 1990, vol. 52, pp. 1014–1019.

    CAS  Google Scholar 

  35. Gordon H.H., Levine S.Z., and McNamara, H., A Comparison of Human and Cow’s Milk, Am. J. Disease Children, 1947, vol. 73, no. 4, pp. 442–452.

    CAS  Google Scholar 

  36. Guo, H.Y., Pang, K., Zhang, X.Y., Zhao, L., Chen, S.W., Dong, M.L., and Ren, F.Z., Composition, Physiochemical Properties, Nitrogen Fraction distribution, and Amino Acid Profile of Donkey Milk, J. Dairy Sci., 2007, vol. 90, pp. 1635–1643.

    Article  PubMed  CAS  Google Scholar 

  37. Haenlein, G.F.W., Mineral Nutrition of Goats, J. Dairy Sci., 1980b, vol. 63, pp. 1729–1748.

    Article  CAS  Google Scholar 

  38. Haenlein, G.N.W., Goat Milk in Human Nutrition, Small Ruminant Res., 2004, vol. 51, pp. 155–163.

    Article  Google Scholar 

  39. Hayes, K.C., Pronczuk, A., and Perlman, D., Vitamin E in Fortified Cow Milk Uniquely Enriches Human Plasma Lipoproteins, Am. J. Clin. Nutrition, 2001, vol. 74, pp. 211–218.

    CAS  Google Scholar 

  40. Iacono, G., Carroccio, A., Cavataio, F., Montalto, G., Soresi, M., and Balsamo, V., Use of Ass’s Milk in Multiple Food Allergy, J. Pediatr. Gastroenterol. Nutrition, 1992, vol. 14, pp. 177–181.

    Article  CAS  Google Scholar 

  41. Indra, R., Magash, A., and Biichee, N., Camel Research, Ulaanbaatar., p. 303.

  42. Indraa and Osorhaan, Industrial Processing of Camel Milk, Agricultural magazine, 1987, no. 1.

  43. Jadambaa, Sh., Batsuh, Ts., and Baigalmaa, P., Research on Use of Camel Milk to Treat Liver Diseases, Product of Technical University, 2000, no. 8, pp. 17–21.

  44. Jenness, R., Composition and Characteristics of Goat Milk: Review 1968–1979, J. Dairy Sci., 1980, vol. 63, pp. 1605–1630.

    Article  CAS  Google Scholar 

  45. Jirillo, F., Jirillo, E., and Magrone, T., Donkey’s and Goat’s Milk Consumption and Benefits to Human Health with Special Reference to the Inflammatory Status, Curr. Pharmaceutical Design, 2010, vol. 16, pp. 859–863.

    Article  CAS  Google Scholar 

  46. Khan, B.B. and Iqbal, A., Production and Composition of Camel Milk: Review, Pakistan J. Agricult. Sci., v, vol. 38, pp. 3–4.

  47. Khan, M.M. and al-Bukhari, S., Translation of the Meanings of the Koran, Saudi Arabia: Al-Medina Islamic University, 1974.

    Google Scholar 

  48. Knip, M., Vaarala, Q., and Kokkonen, J., Cow Milk is Not Responsible for Most Gastrointestinal Immune-Like Syndromes—Evidence from a Population-Based Study, Am. J. Clin. Nutrition, 2005, vol. 82, pp. 1327–1335.

    Google Scholar 

  49. Lanou, A.J., Should dairy Be Recommended As Part of a Healthy Vegetarian Diet? Counterpoint, Am. J. Clin. Nutrition, 2009, vol. 89, pp. 1638S–1642S.

    Article  CAS  Google Scholar 

  50. Lee, K.W., Lee, H.J., Cho, H.Y., and Kim, Y.J., Role of the Conjugated Linoleic Acid in the Prevention of Cancer, Critical Rev. Food Sci. Nutrition, 2005, vol. 45, pp. 135–144.

    Article  CAS  Google Scholar 

  51. Lengemann, F.W., Metabolism of Radioiodine by Lactating Goats Given Iodine-131 for Extended Periods, J. Dairy Sci., 1970, vol. 53, pp. 165–170.

    Article  PubMed  CAS  Google Scholar 

  52. Lock, A.L. and Bauman, D.E., Modifying Milk Fat Composition of Dairy Cows to Enhance Fatty Acids Beneficial to Human Health, Lipids, 2004, vol. 39, pp. 1197–1206.

    Article  PubMed  CAS  Google Scholar 

  53. Malacarne, M., Martuzzi, F., Summer, A., and Mariani, P., Protein and Fat Composition of Mare’s Milk: Some Nutritional Remarks with Reference to Human and Cow’s Milk, Int. Dairy J., 2002, vol. 12, pp. 869–877.

    Article  CAS  Google Scholar 

  54. Mao, X., Gu, J., Suna, Y., Xua, S., Zhanga, K., Yanga H., and Ren, F., Anti-Proliferative and Anti-Tumour Effect of Active Components in Donkey Milk on A549 Human Lung Cancer Cells, Int. Dairy J., 2009, vol. 19, pp. 703–708.

    Article  CAS  Google Scholar 

  55. McGuire, M.A. and McGuire, M.K., Conjugated Linoleic Acid (CLA): A Ruminant Fatty Acid with Beneficial Effects on Human Health, J. Animal Sci., 2000, vol. 77, pp. 1–8.

    Google Scholar 

  56. Metka, Z., Vekoslava, S., and Rogelj, I., Milk Fatty Acid Composition of Goats Grazing on Alpine Pasture, Small Ruminant Res., 2006, vol. 64, pp. 45–52.

    Article  Google Scholar 

  57. Merin, U., Bernstein, S.D., Bloch-Damti, N., Yagil, R., van Creveld, C., and Lindner, P.A., Comparative Study of Milk Proteins in Camel (Camelus dromedarius) and Bovine Colostrum, Livestock Production Sci., 2001, vol. 67, pp. 297–301.

    Article  Google Scholar 

  58. Monti, G., Bertino, E., Cristina, M., Coscia, M., Cresi, F., Silvestro, L., Fabris, C., Fortunato, D., Giuffrida, M.G., and Conti, A., Efficacy of Donkey’s Milk in Treating Highly Problematic Cow’s Milk Allergic Children: An in vivo and in vitro Study, Pediatr. Allergy Immunol., 2007, vol. 18, pp. 258–264.

    Article  PubMed  Google Scholar 

  59. Mora-Gutierrez, A., Kumosinski, T.F., and Farrell, H.M., Jr., Quantification of Alpha-s-1 Casein in Goat Milk from French-Alpine and Anglo-Nubian Breeds Using Reversed-Phase High Performance Liquid Chromatography, J. Dairy Sci., 1991, vol. 74, pp. 3303–3307.

    Article  PubMed  CAS  Google Scholar 

  60. Muraro, M.A., Giampietro, P.G., and Galli, E., Soy Formulas and Nonbovine Milk, Annals Allergy, Asthma Immunol., 2002, vol. 89, no. 1, pp. 97–101.

    Article  CAS  Google Scholar 

  61. Nikkhah, A., Ruminant Milk and Human Wellbeing: a Multi-Species Review, in Milk Production, USA, NY: NOVA Science Publishers, Inc., 2012a.

    Google Scholar 

  62. Nikkhah, A., Science and Pseudo Science of Milk Intake and Human Health, in Milk Production, Inc., USA, NY: NOVA Science Publishers, 2012b.

    Google Scholar 

  63. Nikkhah, A., Milk Products and Postmodern Humans: Public education Commitments, Food Nutr. Sci. 2011, vol. 2, pp. 222–224.

    Article  Google Scholar 

  64. Oftedal, O.T. and Jenness, R., Interspecies Variation in Milk Composition among Horses, Zebras and Asses (Perissodactyla: Equidate), J. Dairy Res., 1988, vol. 55, pp. 57–66.

    Article  PubMed  CAS  Google Scholar 

  65. Okada, T., Effect of Cow Milk Consumption on Longitudinal Height Gain in Children, Am. J. Clin. Nutrition, 2004, vol. 80, pp. 1088–1089.

    CAS  Google Scholar 

  66. Pant, R. and Chandra, P., Composition of Cow and Camel Milk Proteins and Industrial Casein, Milchwissenschaft, 1980, vol. 35, pp. 91–93.

    CAS  Google Scholar 

  67. Parkash, S. and Jenness, R., The Composition and Characteristics of Goats’ Milk: A Review, J. Dairy Sci., 1968, vol. 30, pp. 67–87.

    Google Scholar 

  68. Patton, S., Long, C., and Sokka, T., Effect of Storing Milk on Cholesterol and Phospholipid of Skim Milk, J. Dairy Sci., 1980, vol. 63, pp. 697–700.

    Article  CAS  Google Scholar 

  69. Pfeuffera, M. and Schrezenmeira, J., Bioactive Substances in Milk with Properties Decreasing Risk of Cardiovascular Diseases, Brit. J. Nutrition, 2000, vol. 84, pp. 155–159.

    Google Scholar 

  70. Pfeuffer, M. and Schrezenmeir, J., Milk and the Metabolic Syndrome, Obesity Rev., 2006, vol. 8, pp. 109–118.

    Article  Google Scholar 

  71. Polidori, P., Beghelli, D., Mariani, P., and Vincenzetti, S., Donkey Milk Production: State of the Art, Ital. J. Animal Sci., 2009, vol. 8, pp. 677–683.

    Google Scholar 

  72. Razafindrakato, O., Ravelomanana, N., Rasolofo, A., Rakotarimanana, R.D., Gourgue, P., Coquin, P., Briend, A., and Desjeux, J.-F., Goat’s Milk As a Substitute for Cow’s Milk for Undernourished Children: A Randomized Double Blind Clinical Trial, Pediatrics, 1994, vol. 94, pp. 64–69.

    Google Scholar 

  73. Robinson, J.L., Bovine Milk Orotic Acid: Variability and Significance for Human Nutrition, J. Dairy Sci., 1980, vol. 63, pp. 865–871.

    Article  CAS  Google Scholar 

  74. Salimei E., Cattaneo M., Chiofalo, B., and Dell’Orto, V., Exploitation of Mare’s Milk by Polynsaturated Fatty Acids Anrichment, 31 Symp. Int. Zoot., Milano, 1996, pp. 223–227.

  75. Salimei, E., Fantuz, F., Coppola, R., Chiofalo, B., Polidori, P., and Varisco, G., Composition and Characteristics of Ass’s Milk, Animal Res., 2004, vol. 53, pp. 67–78.

    Article  Google Scholar 

  76. Scott, F.W., Cow Milk and Insulin-Dependent Diabetes Mellitus: is There a Relationship?, Am. J. Clin. Nutrition, 2005, vol. 51, pp. 489–491.

    Google Scholar 

  77. Shabo, Y., Barzel, R., Margoulis, M., and Yagil, R., Camel Milk for Food Allergies in Children, Immunol. Allergy, 2005, vol. 7, pp. 796–798.

    Google Scholar 

  78. Simopoulos, A.P., The Importance of the Ratio of Omega-6/Omega-3 Essential Fatty Acids, Biomed. Pharmacotherapy, 2002, vol. 56, pp. 365–379.

    Article  CAS  Google Scholar 

  79. Stelwagen, K., Carpenter, E., Haigh, N., Hodgkinson, A., and Wheeler, T.T., Immune Components of Bovine Colostrum and Milk, J. Animal Sci., 2009, vol. 87, no. 13, pp. 3–9.

    Article  CAS  Google Scholar 

  80. Tacket, C.O., Losonsky, G., Link, H., Hoang, Y., Guesry, P., Hilpert, H., and Levine, M.M., Protection by Milk Immunoglobulin concentrate against Oral Challenge with Enterotoxigenic Escherichia coli, New Eng. J. Med., 1988, vol. 318, pp. 1240–1243.

    Article  PubMed  CAS  Google Scholar 

  81. Tafaro, A., Magrone, T., Jirillo, F., Martemucci, G., D’Alessandro, A.G., Amati, L., and Jirillo, E., Immunological Properties of Donkey’s Milk: Its Potential Use in the Prevention of Atherosclerosis, Curr. Pharmaceutical Design, 2007, vol. 13, pp. 3711–3717.

    Article  CAS  Google Scholar 

  82. Tantibhedhyangkul, P. and Hashim, S.A., Medium-Chain Triglyceride Feeding in Premature Infants: Effects on Fat and Nitrogen Absorption, Pediatrics, 1975, vol. 55, pp. 359–370.

    PubMed  CAS  Google Scholar 

  83. Tsetsegmaa, Ch., Altaibayar, d., Dolgorsuren, P., Munh-Erdene, G., and Erdenebileg, U., Camel Milk Value Chain Assessment Report, May 2008, Swiss Agency for Development and Cooperation (SDC), 2008.

  84. Urazakov, N.U. and Bainazarov, S.H., The 1st Clinic in History for the Treatment of Pulmonary Tuberculosis with Camel’s Sour Milk, Probl. Tuberk., 1974, vol. 2, pp. 89–90.

    PubMed  Google Scholar 

  85. Vincenzettia, S., Polidorib, P., Marianib, P., Cammertonib, N., Fantuzb, F., and Vitaa, A., Donkey’s Milk Protein Fractions Characterization, Food Chemistry, 2008, vol. 106, pp. 640–649.

    Article  Google Scholar 

  86. Management of Severe Malnutrition: A Manual for Physicians and Other Senior Health Workers, in World Health Organization, Geneva: WHO, 1999.

    Google Scholar 

  87. Xu, R-J., Bioactive Peptides in Milk and Their Biological and Health Implications, Food Rev. Int., 1998, vol. 14, pp. 1–16.

    Article  Google Scholar 

  88. Yang, H.F., Ma, L., Zhao, X.G., and Su, D.Q., Studies on the Development and Exploitation of Donkey Milk, Clin. Food Nutrition, 2006, vol. 4, pp. 22–24.

    Google Scholar 

  89. Yagil, R., Camels and Camel Milk, Italy: FAO (Food and Agricultural Organization of the UN), 1982.

    Google Scholar 

  90. Yasin, S.A. and Wahid, A., Pakistan Camels. A Preliminary Survey, Agric. Pakist., 1957, vol. 8, pp. 289–297; Gast, M., Mauboisj, L., and Adda, J., Le lait et les produits laitiers en Ahaggar., Centr. Rech. Anthr. Prehist. Ethn., 1969; Zhang, X.-Y., Zhao, L., Jiang, L., Dong, M.-L., and Ren, F.-Z., The Antimicrobial Activity of Donkey Milk and Its Microflora Changes During Storage, Food Control, 2008, vol. 19, pp. 1191–1195.

    Google Scholar 

  91. Zhao, X.X., Milk Production of Chinese Bactrian Camel (Camelus bactrianus), Milk Production of Chinese Bactrian camel (Camelus bactrianus), in Proceedings of the Workshop on Dromedaries and Camels, Milking Animals, Nouakchott Mauritania, 1994, pp. 101–105.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akbar Nikkhah.

Additional information

The article is published in the original.

About this article

Cite this article

Nikkhah, A. Milk for humans: Evolving perceptions of an all-time mother science. Russ. Agricult. Sci. 38, 328–336 (2012). https://doi.org/10.3103/S1068367412040143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068367412040143

Keywords

Navigation