Skip to main content
Log in

Adaptive estimation of marginal random-effects densities in linear mixed-effects models

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of adaptive estimation of random-effects densities in linear mixed-effects model. The linear mixed-effects model is defined as Y k,j = α k + β k t j + ɛ k,j , where Y k,j is the observed value for individual k at time t j for k = 1, …,N and j = 1, …, J. Random variables (α k , β k ) are called random effects and stand for the individual random variables of entity k. We denote their densities f α and f β and assume that they are independent of the measurement errors (ɛ k,j ). We introduce kernel estimators of f α and f β and present upper risk bounds. We also compute examples of rates of convergence. The focus of this work lies on the near optimal data driven choice of the smoothing parameter using a penalization strategy in the particular case of fixed interval between times t j . Risk bounds for the adaptive estimators of f α and f β are provided. Simulations illustrate the relevance of the methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Birgé, “An Alternative Point of View on Lepski’s Method”, in State of the Art in Probability and Statistics: Festschrift for Willem R. van Zwet, IMS Lecture Notes-Monograph Series (1999), pp. 113–133.

    Google Scholar 

  2. L. Birgé and P. Massart, “From Model Selection to Adaptive Estimation”, in Festschrift for Lucien Le Cam (Springer, 1997), pp. 55–87.

    Chapter  Google Scholar 

  3. C. Butucea, “Deconvolution of Supersmooth Densities with Smooth Noise”, Canad. J. Statist. 32(2), 181–192 (2004).

    Article  MathSciNet  Google Scholar 

  4. C. Butucea and F. Comte, “Adaptive Estimation of Linear Functionals in the Convolution Model and Applications”, Bernoulli 15(1), 69–98 (2009).

    Article  MathSciNet  Google Scholar 

  5. C. Butucea and A. B. Tsybakov, “Sharp Optimality in Density Deconvolution with Dominating Bias I”, Theory Probab. Appl. 52(1), 24–39 (2008).

    Article  MathSciNet  Google Scholar 

  6. C. Butucea and A. B. Tsybakov, “Sharp Optimality in Density Deconvolution with Dominating Bias II”, Theory Probab. Appl. 52(2), 237–249 (2008).

    Article  MathSciNet  Google Scholar 

  7. R. J. Carroll and P. Hall, “Optimal Rates of Convergence for Deconvolving a Density”, J. Amer. Statist. Assoc. 83(404), 1184–1186 (1988).

    Article  MathSciNet  Google Scholar 

  8. G. Claeskens and J. D. Hart, “Goodness-of-Fit Tests inMixed Models”, TEST 18(2), 213–239 (2009).

    Article  MathSciNet  Google Scholar 

  9. F. Comte and C. Lacour, “Data-Driven Density Estimation in the Presence of Additive Noise with unknown distribution”, J. Roy. Statist. Soc.: Ser. B 73(4), 601–627 (2011).

    Article  MathSciNet  Google Scholar 

  10. F. Comte, Y. Rozenholc, and M.-L. Taupin, “Penalized Contrast Estimator for Adaptive Density Deconvolution”, Canad. J. Statist. 3, 431–452 (2006).

    Article  MathSciNet  Google Scholar 

  11. F. Comte, Y. Rozenholc, and M.-L. Taupin, “Finite Sample Penalization in Adaptive Density Deconvolution”, J. Statist. Comput. Simul. 77(11), 977–1000 (2007).

    Article  MathSciNet  Google Scholar 

  12. F. Comte and A. Samson, “Nonparametric Estimation of Random-Effects Densities in Linear Mixed-Effects Model”, J. Nonparam. Statist. 24(4), 951–975 (2012).

    Article  MathSciNet  Google Scholar 

  13. F. Comte, A. Samson, and J. Stirnemann, “Deconvolution Estimation of Onset of Pregnancy with Replicate Observations”, Scand. J. Statist. 41(2), 325–345 (2013).

    Article  MathSciNet  Google Scholar 

  14. I. Dattner, M. Rei-, and M. Trabs, “Adaptive Quantile Estimation in Deconvolution with Unknown Error Distribution”, Preprint, arXiv:1303.1698, Bernoulli (2013) (in press).

    Google Scholar 

  15. A. Delaigle and I. Gijbels, “Bootstrap Bandwidth Selection in Kernel Density Estimation from a Contaminated Sample”, Ann. Inst. Statist. Math. 56(1), 19–47 (2004).

    Article  MathSciNet  Google Scholar 

  16. A. Delaigle, P. Hall, and A. Meister, “On Deconvolution with Repeated Measurements”, Ann. Statist. 36(2), 665–685 (2008).

    Article  MathSciNet  Google Scholar 

  17. C. Dion, “New Adaptive Strategies for Nonparametric Estimation in Linear Mixed Models”, J. Statist. Plann. Infer. 150, 30–48 (2014).

    Article  MathSciNet  Google Scholar 

  18. S. Efromovich, “Density Estimation for the Case of Supersmooth Measurement Errors”, J. Amer. Statist. Assoc. 92, 526–535 (1997).

    Article  MathSciNet  Google Scholar 

  19. J. Fan, “On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems”, Ann. Statist. 19(3), 1257–1272 (1991).

    Article  MathSciNet  Google Scholar 

  20. W. Ghidey, E. Lesaffre, and P. Eilers, “Smooth Random Effects Distribution in a Linear Mixed Model”, Biometrics 60(4), 945–953 (2004).

    Article  MathSciNet  Google Scholar 

  21. A. Goldenshluger and O. Lepski, “Bandwidth Selection in Kernel Density Estimation: Oracle Inequalities and Adaptive Minimax Optimality”, Ann. Statist. 39(3), 1608–1632 (2011).

    Article  MathSciNet  Google Scholar 

  22. J. G. Ibrahim and K. P. Kleinman, “Semiparametric Bayesian Methods for Random Effects Models”, in Lecture Notes in Statist., Vol. 133: Practical Nonparametric and Semiparametric Bayesian Statistics (Springer, New York, 1998), pp. 89–114.

    Chapter  Google Scholar 

  23. J. Johannes, “Deconvolution with Unknown Error Distribution”, Ann. Statist. 37(5a), 2301–2323 (2009).

    Article  MathSciNet  Google Scholar 

  24. J. Johannes and M. Schwarz, “Adaptive Circular Deconvolution by Model Selection under Unknown Error Distribution”, Bernoulli 19(5A), 1576–1611 (2013).

    Article  MathSciNet  Google Scholar 

  25. J. Kappus, “Adaptive Nonparametric Estimation for Lévy Processes Observed at Low Frequency”, Stoch. Proc. and Appl. 124, 730–758 (2014).

    Article  MathSciNet  Google Scholar 

  26. J. Kappus and G. Mabon, “Adaptive Density Estimation in Deconvolution Problems with Unknown Error Distribution”, Electron. J. Statist. 8(2), 2879–2904 (2014).

    Article  MathSciNet  Google Scholar 

  27. A. Komárek and E. Lesaffre, “Generalized Linear Mixed Model with a Penalized Gaussian Mixture as a Random Effects Distribution”, Comput. Statist. Data Anal. 52(7), 3441–3458 (2008).

    Article  MathSciNet  Google Scholar 

  28. T. Li and Q. Vuong, “Nonparametric Estimation of the Measurement Error Model Using Multiple Indicators”, J. Multivar.Anal. 65, 139–165 (1998).

    Article  MathSciNet  Google Scholar 

  29. P. Massart, Concentration Inequalities and Model Selection, in Lecture Notes in Mathematics, Vol. 1896: Lectures from the 33rd Summer School on Probability Theory, Saint-Flour, July 6–23, 2003 (Springer, Berlin, 2003).

    Google Scholar 

  30. A. Meister, Deconvolution Problems in Nonparametric Statistics, in Lecture Notes in Statistics (Springer, Berlin, 2009), Vol. 193.

    Google Scholar 

  31. M. N. Neumann, “Deconvolution from Panel Data with Unknown Error Distribution” J. Multivar. Anal. 98(10), 1955–1968 (2007).

    Article  Google Scholar 

  32. M. N. Neumann and M. Reiß, “Nonparametric Estimation for Lévy Processes from Low Frequency Observations”, Bernoulli 15(1), 223–248 (2009).

    Article  MathSciNet  Google Scholar 

  33. M. H. Neumann, “On the Effect of Estimating the Error Density in Nonparametric Deconvolution”, J. Nonparam. Statist. 7(4), 307–330 (1997).

    Article  Google Scholar 

  34. M. Pensky and B. Vidakovic, “AdaptiveWavelet Estimator for Nonparametric Density Deconvolution”, Ann. Statist. 27(6), 2033–2053 (1999).

    Article  MathSciNet  Google Scholar 

  35. J.C. Pinheiro and D.M. Bates, Mixed-EffectModels in S and Splus, inStatistics and Computing Series (Springer, New York, NY, 2000).

    Google Scholar 

  36. W. Shen and T. A. Louis, “Empirical Bayes Estimation via the Smoothing by Roughening Approach”, J. Comput. Graph. Statist. 8(4), 800–823 (1999).

    MathSciNet  Google Scholar 

  37. L. A. Stefanski, “Rates of Convergence of Some Estimators in a Class of Deconvolution Problems”, Statist. Probab. Lett. 9, 229–235 (1990).

    Article  MathSciNet  Google Scholar 

  38. S. Stefanski and R. Carroll, “Deconvoluting Kernel Density Estimators”, Statistics 21, 169–184 (1990).

    Article  MathSciNet  Google Scholar 

  39. D. M. Vock, M. Davidian, A. A. Tsiatis, and A. J. Muir, “Mixed Model Analysis of Censored Longitudinal Data with Flexible Random-Effects Density”, Biostatistics 13, 61–73 (2001).

    Article  Google Scholar 

  40. P. Wu and L. X. Zhu, “An Orthogonality-Based Estimation of Moments for Linear Mixed Models”, Scand. J. Statist. 37, 253–263 (2010).

    Article  MathSciNet  Google Scholar 

  41. D. Zhang and M. Davidian, “Linear Mixed Models with Flexible Distributions of Random Effects for Longitudinal Data”, Biometrics 57(3), 795–802 (2001).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Mabon.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabon, G. Adaptive estimation of marginal random-effects densities in linear mixed-effects models. Math. Meth. Stat. 24, 81–109 (2015). https://doi.org/10.3103/S1066530715020015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530715020015

Keywords

2000 Mathematics Subject Classification

Navigation