Skip to main content
Log in

Nonparametric estimation of a renewal reward process from discrete data

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We study the nonparametric estimation of the jump density of a renewal reward process from one discretely observed sample path over [0, T]. We consider regimes where the sampling rate Δ = Δ T → 0 as T → ∞. We propose an adaptive wavelet threshold density estimator and study its performance for the L p loss, p ≥ 1, over Besov spaces. We achieve minimax rates of convergence for sampling rates Δ T that vanish with T at arbitrary polynomial rate. In the same spirit as Buchmann and Grübel (2003) and Duval (2012), the estimation procedure is based on the inversion of the compounding operator. The inverse has no closed form expression and is approached with a fixed point technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. E. Alvarez, “Estimation in Stationary Markov Renewal Processes, with Application to Earthquake Forecasting in Turkey”, Methodology and Computing in Appl. Probab. 7, 119–130 (2005).

    Article  MATH  Google Scholar 

  2. M. Bec and C. Lacour, “Adaptive Kernel Estimation of the Lévy Density”, Hal preprint 0058322 (2011).

    Google Scholar 

  3. B. Buchmann and R. Grübel, “Decompounding: an Estimation Problem for Poisson Random Sums”, Ann. Statist. 31, 1054–1074 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Cohen, Numerical Analysis of Wavelet Methods, in Studies in Mathematics and Its Applications (2003), Vol. 32.

    Google Scholar 

  5. F. Comte and V. Genon-Catalot, “Nonparametric Estimation for Pure Jump Lévy Processes Based on High Frequency Data”, Stochastic Processes and Their Applications 119, 4088–4123 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Comte and V. Genon-Catalot, “Nonparametric Adaptive Estimation for Pure Jump Lévy Processes”, Ann. de l’I.H.P., Probab. and Statist. 46, 595–617 (2010).

    MathSciNet  MATH  Google Scholar 

  7. F. Comte and V. Genon-Catalot, “Estimation for Lévy Processes from High Frequency Data within a Long Time Interval”, Ann. Statist. 39, 803–837 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  8. H. M. Cuppen, O. Morata, and E. Herbst, “Monte Carlo Simulations of H 2 Formation on Stochastically Heated Grains”, Arxiv preprint 0601554v1 (2006).

    Google Scholar 

  9. J. Dedecker, P. Doukhan, G. Lang, R. J. León, S. Louhichi, and C. Prieur, Weak Dependence. With Examples and Applications, in Lecture Notes in Statistics (Springer, 2007).

    Google Scholar 

  10. D. L. Donoho, I. M. Johnstone, G. Kerkyacharian, and D. Picard, “Density Estimation by Wavelet Thresholding”, Ann. Statist. 24(2), 508–539 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Duval, “Adaptive Wavelet Estimation of a Compound Poisson Process”, Arxiv preprint 12033135 (2012).

    Google Scholar 

  12. S. Fedotov and A. Iomin, “Probabilistic Approach to a Proliferation and Migration Dichotomy in the Tumor Cell Invasion”, Physical Review E 77, 031911 (2008).

    Article  MathSciNet  Google Scholar 

  13. J. E. Figueroa-López and C. Houdré, “Risk Bounds for the Nonparametric Estimation of Lévy Processes”, in IMS Lecture Notes-Monogr. Ser., Vol. 51: High dimensional probability (2006), pp. 96–116.

    Google Scholar 

  14. W. Härdle, G. Kerkyacharian, D. Picard, and S. Tsybakov, Wavelets, Approximation, and Statistical Applications, in Lecture Notes in Statistics (Springer, 1998), Vol. 129.

    Google Scholar 

  15. A. Helmstetter and D. Sornette, “Diffusion of Epicenters of Earthquake Aftershocks, Omori’s Law, and Generalized Continuous-Time Random Walk Models”, Amer. Phys, Soc. 66, 061104 (2002).

    Google Scholar 

  16. J. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sørensen, L. Oddershede, and R. Matzler, “In Vivo Anomalous Diffusion and Weak Ergodicity Breaking of Lipid Granules”, Arxiv preprint 10100347v2 (2010).

    Google Scholar 

  17. G. Kerkyacharian and D. Picard, “Thresholding Algorithms, Maxisets and Well-Concentrated Bases”, Test 9(2), 283–344 (2000).

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kessler, “Estimation of an Ergodic Diffusion from Discrete Observations”, Scandinav. J. Statist. 24, 211–229 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  19. M. Kotulski, “Asymptotic Distributions of the Continuous-Time Random Walks: A Probabilistic Approach”, J. Statist. Phys. 81, 777–792 (1995).

    Article  MATH  Google Scholar 

  20. T. Lindvall, Lectures on the Coupling Method, in Dover Publications (1992).

    Google Scholar 

  21. J. Masoliver, M. Montero, and J. Perelló, “The Continuous Time Random Walk Formalism in Financial Markets”, Arxiv preprint 0611138v1 (2006).

    Google Scholar 

  22. M. M. Meerschaert and H. P. Scheffler, “Limit Theorems for Continuous-Time Random Walks with Infinite Mean Waiting Times”, J. Appl. Probab. 41, 623–638 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. M. M. Meerschaert and H. P. Scheffler, “Limit Theorems for Continuous Time Random Walks with Slowly Varying Waiting Times”, Statist. Probab. Letters 71, 15–22 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Neumann and M. Rei, “Nonparametric Estimation for Lévy Processes from Low-Frequency Observations”, Bernoulli 15, 223–248 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. I. Rodriguez-Iturbe, D. R. Cox, and V. Isham, “A Point Process Model for Rainfall: Further Developments”, Proc. Roy. Soc. London. Series A, Math. and Phys. Sci. 417(1853), 283–298 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  26. E. Scalas, R. Gorenflo, H. Luckock, F. Mainardi, M. Mantelli, and M. Raberto, “Anomalous Waiting Times in High-Frequency Financial Data”, Arxiv preprint 0505210v1 (2005).

    Google Scholar 

  27. E. Scalas, “The Application of Continuous-Time Random Walks in Finance and Economics”, Physica A 362, 225–239 (2006).

    Article  Google Scholar 

  28. B. van Es, S. Gugushvili and P. Spreij, “A Kernel Type Nonparametric Density Estimator for Decompounding”, Bernoulli 13, 672–694 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  29. Y. Vardi, “Nonparametric Estimation in Renewal Processes”, Ann. Statist. 10(3), 772–785 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  30. N. W. Watkins and D. Credgington, “A Kinetic Equation for Linear Fractional Stable Motion with Applications to Space Plasma Physics”, Arxiv preprint 0803.2833v1 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Duval.

About this article

Cite this article

Duval, C. Nonparametric estimation of a renewal reward process from discrete data. Math. Meth. Stat. 22, 28–56 (2013). https://doi.org/10.3103/S106653071301002X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106653071301002X

Keywords

2000 Mathematics Subject Classification

Navigation