Skip to main content
Log in

Asymptotically optimal estimating equation with strongly consistent solutions for longitudinal data

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In this article, we introduce a conditional marginal model for longitudinal data, in which the residuals form a martingale difference sequence. This model allows us to consider a rich class of estimating equations which contains several estimating equations proposed in the literature. A particular sequence of estimating equations in this class contains a random matrix R *i−1 (β) as a replacement for the “true” conditional correlation matrix of the ith individual. Using the approach of [12], we identify some sufficient conditions under which this particular sequence of equations is asymptotically optimal (in our class). In the second part of the article, we identify a second set of conditions under which we prove the existence and strong consistency of a sequence of estimators of β defined as roots of estimation equations which are martingale transforms (in particular, roots of the sequence of asymptotically optimal equations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. Balan, L. Dumitrescu, and I. Schiopu-Kratina, The Asymptotically Optimal Estimating Equation for longitudinal Data. Strong Consistency, in Tech. Rep. Ser. (Laboratory for Research in Probability and Statistics, Univ. of Ottawa-Carleton Univ., 2008), Vol. 440.

  2. R. M. Balan and I. Schiopu-Kratina, “Asymptotic Results with Generalized Estimating Equations for Longitudinal Data”, Ann. Statist. 33, 522–541 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  3. G. Casella and R. L. Berger, Statistical Inference, 2nd ed. (Duxbury, 2002).

  4. K. Chen, I. Hu, and Z. Ying, “Strong Consistency of Maximum Quasi-Likelihood Estimators in Generalized Linear Models with Fixed and Adaptive Designs”, Ann. Statist. 27, 1155–1163 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  5. P. Diggle, P. Heagerty, K.-Y. Liang, and S. Zeger, Analysis of Longitudinal Data, 2nd ed. (Oxford Univ. Press, 2002).

  6. L. Fahrmeir and H. Kaufmann, “Consistency and Asymptotic Normality of the Maximum Likelihood Estimator in Generalized Linear Models”, Ann. Statist. 13, 342–368 (1985).

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Fahrmeir and H. Kaufmann, “Asymptotic Inference in Discrete Response Models”, Statist. Hefte 27, 179–205 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Fan, T. Huang, and R. Li, “Analysis of Longitudinal Data with Semiparametric Estimation of Covariance Function”, J. Amer. Statist. Assoc. 102, 632–641 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  9. V. P. Godambe, “An Optimum Property of Regular Maximum Likelihood Estimation”, Ann. Math. Statist. 31, 1208–1211 (1960).

    Article  MathSciNet  Google Scholar 

  10. P. Hall and C. C. Heyde, Martingale Limit Theory and Its Applications (Academic Press, 1980).

  11. D. Hedeker and R. D. Gibbons, Longitudinal Data Analysis (Wiley, 2006).

  12. C. C. Heyde, Quasi-Likelihood and its Application. An Optimal Approach to Parameter Estimation (Springer, New York, 1997).

    Book  Google Scholar 

  13. J. Z. Huang, N. Liu, M. Pourahmadi, and L. Liu, “Covariance Selection and Estimation via Penalized Normal Likelihood”, Biometrika 93, 85–98 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Jiang, Y. Luan, and Y.-G. Wang, “Iterative Estimating Equations: Linear Convergence and Asymptotic Properties”, Ann. Statist. 35, 2233–2260 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Kaufmann, “On the Strong Law of Large Numbers for Multivariate Martingales”, Stochastic Processes and Their Applications 26, 73–85 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  16. T. L. Lai, H. Robbins, and C. Z. Wei, “Strong Consistency of Least Squares Estimates in Multiple Regression. II”, J. Multivar. Anal. 9, 343–361 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  17. K.-Y. Liang and S. L. Zeger, “Longitudinal Data Analysis Using Generalized Linear Models”, Biometrika 73, 13–22 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  18. X. Lin and R. J. Carroll, “Nonparametric Function Estimation for Clustered Data when the Predictor is Measured without/with Error”, J. Amer. Statist. Assoc. 95, 520–534 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  19. J. R. Lockwood and D. F. McCaffrey, “Controlling for Individual Heterogeneity in Longitudinal Models, with Applications to Student Achievement”, Elect. J. Statist. 1, 223–252 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  20. P. McCullagh and J. A. Nelder, Generalized Linear Models, 2nd ed. (Chapman & Hall, 1989).

  21. J. N. K. Rao, “Marginal Models for Repeated Observatons: Inference with Survey Data”, in Proc. of the Section on Survey Research Methods (Amer. Statist. Assoc., 1998), pp. 76–82.

  22. I. Schiopu-Kratina, “Asymptotic Results for Generalized Estimating Equations with Data from Complex Surveys”, Revue roumaine de math. pures et appl. 48, 327–342 (2003).

    MATH  MathSciNet  Google Scholar 

  23. J. R. Schott, Matrix Analysis for Statistics, 2nd ed. (Wiley, 2005).

  24. J. Singer and J. Willett, Applied Longitudinal Data Analysis: Modelling Change and Event Occurence (Oxford Univ. Press, 2003).

  25. C. G. Small, J. Wang, and Z. Yang, “Eliminating multiple roots problems in estimation”, Statist. Science 15, 313–341 (2000).

    MathSciNet  Google Scholar 

  26. W. K. Thompson, M. Xie, and H. R. Whitem, “Transformations of Covariates for Longitudinal Data”, Biostatistics 4, 353–364 (2003).

    Article  MATH  Google Scholar 

  27. N. Wang, R. J. Carroll, and X. Lin, “Efficient Semiparametric Marginal Estimation for Longitudinal/Clustered Data”, J. Amer. Statist. Assoc. 100, 147–157 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  28. W. B. Wu and M. Pourahmadi, “Nonparametric estimation of large covariance matrices of longitudinal data”, Biometrika 90, 831–844 (2003).

    Article  MathSciNet  Google Scholar 

  29. M. Xie and Y. Yang, “Asymptotics for Generalized Estimating Equations with Large Cluster Sizes”, Ann. Statist. 31, 310–347 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  30. F. Yao, H. G. Müller, and J.-L. Wang, “Functional Data Analysis for Sparse Longitudinal Data”, J. Amer. Statist. Assoc. 100, 577–590 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  31. F. Yao, H. G. Müller, and J.-L. Wang, “Functional data analysis for longitudinal data”, Ann. Statist. 33, 2873–2903 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  32. D. Zeng and J. Cai, “Asymptotic Results for Maximum Likelihood Estimators in Joint Analysis of Repeated Measurements and Survival Time”, Ann. Statist. 33, 2132–2163 (2005).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Balan.

Additional information

This paper is based on a portion of the second author’s doctoral thesis.

About this article

Cite this article

Balan, R.M., Dumitrescu, L. & Schiopu-Kratina, I. Asymptotically optimal estimating equation with strongly consistent solutions for longitudinal data. Math. Meth. Stat. 19, 93–120 (2010). https://doi.org/10.3103/S1066530710020018

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530710020018

Key words

2000 Mathematics Subject Classification

Navigation