Skip to main content
Log in

Adaptive estimation in circular functional linear models

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

We consider the problem of estimating the slope parameter in circular functional linear regression, where scalar responses Y 1, ..., Y n are modeled in dependence of 1-periodic, second order stationary random functions X 1, ...,X n . We consider an orthogonal series estimator of the slope function β, by replacing the first m theoretical coefficients of its development in the trigonometric basis by adequate estimators. We propose a model selection procedure for m in a set of admissible values, by defining a contrast function minimized by our estimator and a theoretical penalty function; this first step assumes the degree of ill-posedness to be known. Then we generalize the procedure to a random set of admissible m’s and a random penalty function. The resulting estimator is completely data driven and reaches automatically what is known to be the optimal minimax rate of convergence, in terms of a general weighted L 2-risk. This means that we provide adaptive estimators of both β and its derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Barron, L. Birgé, and P. Massart, “Risk Bounds for Model Selection via Penalization”, Probab. Theory Rel. Fields 113(3), 301–413 (1999).

    Article  MATH  Google Scholar 

  2. H. Cardot and J. Johannes, “Thresholding Projection Estimators in Functional Linear Models”, J. Multivar. Anal. 101, 395–408 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  3. H. Cardot, F. Ferraty, and P. Sarda, “Spline Estimators for the Functional Linear Model”, Statistica Sinica 13, 571–591 (2003).

    MATH  MathSciNet  Google Scholar 

  4. F. Comte, Y. Rozenholc, and M.-L. Taupin, “Penalized Contrast Estimator for Density Deconvolution”, Canad. J. Statist. 37(3), 431–452 (2006).

    Article  MathSciNet  Google Scholar 

  5. C. Crambes, A. Kneip, and P. Sarda, “Smoothing Splines Estimators for Functional Linear Regression”, Ann. Statist. 37(1), 35–72 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  6. H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems (Kluwer Academic, Dordrecht, 2000).

    Google Scholar 

  7. F. Ferraty and P. Vieu, Nonparametric Functional Data Analysis: Methods, Theory, Applications and Implementations (Springer, London, 2006).

    Google Scholar 

  8. M. Forni and L. Reichlin, “Let’s Get Real: A Factor Analytical Approach to Disaggregated Business Cycle Dynamics”, Review of Economic Studies 65, 453–473 (1998).

    Article  MATH  Google Scholar 

  9. P. Hall and J. L. Horowitz, “Methodology and Convergence Rates for Functional Linear Regression”, Ann. Statist. 35(1), 70–91 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  10. G. M. James, J. Wang, and J. Zhu, “Functional Linear Regression that’s Interpretable”, Ann. Statist. 37(5A), 2083–2108 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Johannes, Nonparametric Estimation in Circular Functional Linear Model, Technical Report (revised and submitted) (University Heidelberg, 2009) http://arxiv.org/abs/0901.4266v1

  12. B. A. Mair and F. H. Ruymgaart, “Statistical Inverse Estimation in Hilbert Scales”, SIAMJ. Appl. Math. 56(5), 1424–1444 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Massart, Concentration Inequalities and Model Selection, Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6–23, 2003; with a foreword by Jean Picard, in Lecture Notes in Mathematics (Springer, Berlin, 2007), Vol. 1896.

    MATH  Google Scholar 

  14. H.-G. Müller and U. Stadtmüller, “Generalized Functional Linear Models”, Ann. Statist. 33, 774–805 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Natterer, “Error Bounds for Tikhonov Regularization in Hilbert Scales”, Applicable Analysis 18, 29–37 (1984).

    Article  MATH  MathSciNet  Google Scholar 

  16. M. H. Neumann, “On the Effect of Estimating the Error Density in Nonparametric Deconvolution”, J. Nonparam. Statist. 7, 307–330 (1997).

    Article  MATH  Google Scholar 

  17. V. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, 4th ed., in Oxford Studies in Probability (Clarendon Press, Oxford, 1995).

    MATH  Google Scholar 

  18. C. Preda and G. Saporta, “PLS Regression on a Stochastic Process”, Computational Statist. & Data Analysis 48, 149–158 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  19. J. O. Ramsay and B.W. Silverman, Functional Data Analysis, 2nd ed. (Springer, New York, 2005).

    Google Scholar 

  20. M. Talagrand, “New Concentration Inequalities in Product Spaces”, Invent. Math. 126(3), 505–563 (1996).

    Article  MATH  MathSciNet  Google Scholar 

  21. U. Tautenhahn, “Error Estimates for Regularization Methods in Hilbert Scales”, SIAM J. Numer. Anal. 33(6), 2120–2130 (1996).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Comte.

About this article

Cite this article

Comte, F., Johannes, J. Adaptive estimation in circular functional linear models. Math. Meth. Stat. 19, 42–63 (2010). https://doi.org/10.3103/S1066530710010035

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530710010035

Key words

2000 Mathematics Subject Classification

Navigation