Skip to main content
Log in

On the cumulative quantile regression process

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

Let (X, Y) be a bivariate random vector and F(x) the marginal distribution function of X. The quantile regression (QR) function of Y on X is defined as r(u) = E[Y | F(X) = u] and the cumulative QR function (CQR) M(u) as its integral over [0, u]. The empirical counterpart based on a sample of size n is M n (u). In this paper, we construct strong Gaussian approximations of the associated CQR process under appropriate assumptions. The construction provides a firm basis for the study of functional statistics based on M in (u). A law of the iterated logarithm for the CQR process follows from our result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics (Academic Press, New York, 1981).

    Google Scholar 

  2. M. Csörgő, S. Csörgő, and L. Horváth, An Asymptotic Theory for Empirical Reliability and Concentration Processes, in Lecture Notes in Statistics (Springer, New York, 1986), Vol. 33.

    Google Scholar 

  3. M. Csörgő and R. Zitikis, “Strassen’s LIL for the Lorenz Curve”, J. Multivariate Analysis 59, 1–12 (1996).

    Article  Google Scholar 

  4. M. Csörgő and R. Zitikis, Confidence Bands for the Lorenz Curve and Goldie Curves, in A Volume in Honor of Samuel Kotz (Wiley, New York, 1996).

    Google Scholar 

  5. M. Csörgő and R. Zitikis, “On the Rate of Strong Consistency of Lorenz Curves”, Statist. Probab. Letters 34, 113–121 (1997).

    Article  Google Scholar 

  6. Yu. Davydov, and V. Egorov, “Functional Limit Theorems for Induced Order Statistics”, Math. Methods Statist. 9, 297–313 (2000).

    MATH  MathSciNet  Google Scholar 

  7. J. L. Gastwirth, “A General Definition of the Lorenz Curve”, Econometrica 39, 1037–1039 (1971).

    Article  MATH  Google Scholar 

  8. J. L. Gastwirth, “The Estimation of the Lorenz Curve and Gini Index”, Review of Econometric Statist. 54, 306–316 (1972).

    Article  MathSciNet  Google Scholar 

  9. C. M. Goldie, “Convergence Theorems for Empirical Lorenz Curve and Their Inverses”, Advances in Applied Probab. 9, 765–791 (1977).

    Article  MATH  MathSciNet  Google Scholar 

  10. F. Greselin, M. L. Puri, and R. Zitikis, “L-functions, Processes, and Statistics in Measuring Economic Inequality and Actuarial Risks”, Statistics and Its Interface 2, 227–245 (2009).

    Google Scholar 

  11. J. Komlós, P. Major, and G. Tusnády, “An Approximation of Partial Sums of Independent R.V.’s and the Sample D.F. I”, Z. Wahrsch. verw. Gebiete 32, 111–132 (1975).

    Article  MATH  Google Scholar 

  12. J. Komlós, P. Major, and G. Tusnády, An Approximation of Partial Sums of Independent R.V.’s and the Sample D.F. II”, Z. Wahrsch. verw. Gebiete 34, 33–58 (1976).

    Article  MATH  Google Scholar 

  13. P. C. Mahalanobis, Lectures in Japan: Fractile Graphical Analysis (Indian Statistical Institute, 1958).

  14. P. C. Mahalanobis, “A Method of Fractile Graphical Analysis”, Econometrika 28, 325–351 (1960).

    Article  Google Scholar 

  15. E. Parzen, “Nonparametric Statistical Data Modeling”, J. Amer. Statist. Assoc. 74, 105–131 (1979).

    Article  MATH  MathSciNet  Google Scholar 

  16. C. R. Rao and L. C. Zhao, “Convergence Theorems for Empirical Cumulative Quantile Regression Functions”, Math. Methods Statist. 4, 81–91 (1995).

    MATH  MathSciNet  Google Scholar 

  17. C. R. Rao and L. C. Zhao, “Strassen’s Law of the Iterated Logarithm for the Lorenz Curves”, J. Multivariate Analysis 54, 239–252 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  18. C. R. Rao and L. C. Zhao, “Law of the Iterated Logarithm for Empirical Cumulative Quantile Regression Functions”, Statistica Sinica 6, 693–702 (1996).

    MATH  MathSciNet  Google Scholar 

  19. E. Schechtman, A. Shelef, S. Yitzhaki, and R. Zitikis, “Testing Hypotheses about Absolute Concentration Curves and Marginal Conditional Stochastic Dominance”, EconometricTheory 24, 1044–1062 (2008).

    MATH  Google Scholar 

  20. S.M. Tse, “Lorenz Curve for Truncated and Censored Data”, Ann. Inst. Statist. Math. 58, 675–686 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Tse.

About this article

Cite this article

Tse, S.M. On the cumulative quantile regression process. Math. Meth. Stat. 18, 270–279 (2009). https://doi.org/10.3103/S1066530709030053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530709030053

Key words

2000 Mathematics Subject Classification

Navigation