Skip to main content
Log in

Adaptive density deconvolution with dependent inputs

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

In the convolution model Z i = X i + ε i , we give a model selection procedure to estimate the density of the unobserved variables (X i )1≤in , when the sequence (X i ) i≥1 is strictly stationary but not necessarily independent. This procedure depends on whether the density of the ɛ i is supersmooth or ordinary smooth. The rates of convergence of the penalized contrast estimators are the same as in the independent framework, and are minimax over most regularity classes on ℝ. Our results apply to mixing sequences, but also to many other dependent sequences. When the errors are supersmooth, the condition on the dependence coefficients is the minimal condition of that type ensuring that the sequence (X i ) i≥1 is not a long-memory process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Berbee, Random Walks with Stationary Increments and Renewal Theory, in Mathematical Centre Tracts, Vol. 112 (Mathematisch Centrum, Amsterdam, 1979).

    Google Scholar 

  2. L. Birgé and P. Massart, “Minimum Contrast Estimators on Sieves: Exponential Bounds and Rates of Convergence”, Bernoulli 4, 329–375 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  3. R. C. Bradley, Introduction to StrongMixing Conditions (Kendrick Press, Heber City, UT, 2007), Vol. 1.

    Google Scholar 

  4. C. Butucea, “Deconvolution of Supersmooth Densities with Smooth Noise”, Canadian J. Statist. 32, 181–192 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  5. C. Butucea and A. B. Tsybakov, “Sharp Optimality for Density Deconvolution with Dominating Bias”, Teor. Veroyatn. Primen. 52, 111–128 (2007).

    MathSciNet  Google Scholar 

  6. F. Comte, “Kernel Deconvolution of Stochastic VolatilityModels”, J. Time Ser. Anal. 25, 563–582 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Comte and V. Genon-Catalot, “Penalized Projection Estimator for Volatility Density”, Scand. J. Statist. 33, 875–893 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Comte and F. Merlevéde, “Adaptive Estimation of the Stationary Density of Discrete and Continuous Time Mixing Processes”, ESAIMProbab. Statist. (Electronic) 6, 211–238 (2002).

    Google Scholar 

  9. F. Comte, Y. Rozenholc, and M. L. Taupin, “Penalized Contrast Estimator for Adaptive Density Deconvolution”, Canadian J. Statist. 34, 431–452 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Comte, Y. Rozenholc, and M. L. Taupin, “Finite Sample Penalization in Adaptive Density Deconvolution”, J. Statist. Comput. Simul. 77, 977–1000 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Dedecker and C. Prieur, “NewDependenceCoefficients.Examples and Applications to Statistics”, Probab. Theory Rel. Fields 132, 203–236 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  12. L. Devroye, Non-Uniform Random Variate Generation (Springer, New York etc., 1986).

    MATH  Google Scholar 

  13. P. Doukhan, Mixing: Properties and Examples, in Lecture Notes in Statistics, Vol. 85 (New York, Springer, 1994).

    MATH  Google Scholar 

  14. J. D. Esary, F. Proschan, and D. W. Walkup, “Association of Random Variables, with Applications”, Ann. Math. Statist. 38, 1466–1474 (1967).

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Fan, “On the Optimal Rates of Convergence for Nonparametric Deconvolution Problems”, Ann. Statist. 19, 1257–1272 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Klein and E. Rio, “Concentration around theMean forMaxima of Empirical Processes”, Ann. Probab. 33, 1060–1077 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Lacour, “Rates of Convergence for Nonparametric Deconvolution”, C. R. Math. Acad. Sci. Paris Sér. I Math. 342, 877–882 (2006).

    MathSciNet  MATH  Google Scholar 

  18. E. Masry, “Strong Consistency and Rates for Deconvolution of Multivariate Densities of Stationary Processes”, Stochastic Processes Appl. 47, 53–74 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  19. E. Masry, “Deconvolving Multivariate Kernel Density Estimates from Contaminated Associated Observations”, IEEE Trans. Inform. Theory 49, 2941–2952 (2003).

    Article  MathSciNet  Google Scholar 

  20. Y. Meyer, Ondelettes et opérateurs I: Ondelettes, in Actualités Mathéematiques (Hermann, Paris, 1990).

    Google Scholar 

  21. M. Pensky, “Estimation of a Smooth Density Function Using Meyer-Type Wavelets”, Statist. Decis. 17, 111–123 (1999).

    MathSciNet  MATH  Google Scholar 

  22. M. Pensky and B. Vidakovic, “AdaptiveWavelet Estimator for Nonparametric Density Deconvolution”, Ann. Statist. 27, 2033–2053 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Rigollet, “Adaptive Density Estimation Using the Blockwise Stein Method”, Bernoulli 12, 351–370 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Rosenblatt, “A Central Limit Theorem and a Strong Mixing Condition”, Proc. Nat. Acad. Sci. USA 42, 43–47 (1956).

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Tribouley and G. Viennet, “\( \mathbb{L}_p \) Adaptive Density Estimation in a β Mixing Framework”, Ann. Inst. H. Poincaré, Probab. Statist. 34, 179–208 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  26. B. van Es, P. Spreij, and H. van Zanten, “Nonparametric Volatility Density Estimation”, Bernoulli 9, 451–465 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  27. B. van Es, P. Spreij, and H. van Zanten, “Nonparametric Volatility Density Estimation for Discrete Time Models”, J. Nonparam. Statist. 17, 237–251 (2005).

    Article  MATH  Google Scholar 

  28. G. Viennet, “Inequalities for Absolutely Regular Sequences: Application to Density Estimation”, Probab. Theory Rel. Fields 107, 467–492 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  29. V. A. Volkonskii and Yu. A. Rozanov, “Some Limit Theorems for Random Functions. I”, Theory Probab. Appl. 4, 178–197 (1960).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Comte.

About this article

Cite this article

Comte, F., Dedecker, J. & Taupin, M.L. Adaptive density deconvolution with dependent inputs. Math. Meth. Stat. 17, 87–112 (2008). https://doi.org/10.3103/S1066530708020014

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530708020014

Key words

2000 Mathematics Subject Classification

Navigation