Skip to main content
Log in

Stein shrinkage and second-order efficiency for semiparametric estimation of the shift

  • Published:
Mathematical Methods of Statistics Aims and scope Submit manuscript

Abstract

The problem of estimating the shift (or, equivalently, the center of symmetry) of an unknown symmetric and periodic function f observed in Gaussian white noise is considered. Using the blockwise Stein method, a penalized profile likelihood with a data-driven penalization is introduced so that the estimator of the center of symmetry is defined as the maximizer of the penalized profile likelihood. This estimator has the advantage of being independent of the functional class to which the signal f is assumed to belong and, furthermore, is shown to be semiparametrically adaptive and efficient.

Moreover, the second-order term of the risk expansion of the proposed estimator is proved to behave at least as well as the second-order term of the risk of the best possible estimator using monotone smoothing filter. Under mild assumptions, this estimator is shown to be second-order minimax sharp adaptive over the whole scale of Sobolev balls with smoothness β > 1. Thus, these results extend those of [10], where second-order asymptotic minimaxity is proved for an estimator depending on the functional class containing f and β ≥ 2 is required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Belitser and B. Levit, “On minimax filtering on ellipsoids”, Math. Methods Statist. 4, 259–273 (1995).

    MATH  MathSciNet  Google Scholar 

  2. P. Bickel, “On adaptive estimation”, Ann. Statist. 10, 647–671 (1982).

    MATH  MathSciNet  Google Scholar 

  3. P. Bickel, C. Klaassen, Y. Ritov, and J. Wellner, Efficient and Adaptive Estimation for Semiparametric Models (Springer, New York, 1998).

    MATH  Google Scholar 

  4. L. Brown, M. Low, and L. Zhao, “Superefficiency in nonparametric function estimation”, Ann. Statist. 25, 2607–2625 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  5. T. Cai, “Adaptive wavelet estimation: a block thresholding and oracle inequality approach”, Ann. Statist. 27, 898–924 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  6. T. Cai and M. Low, “Nonparametric estimation over shrinking neighborhoods: superefficiency and adaptation”, Ann. Statist. 33(1), 184–213 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  7. I. Castillo, “Semiparametric second order efficient estimation of the period of a signal”, Bernoulli, 2005 (in press).

  8. L. Cavalier and A. Tsybakov, “Penalized blockwise Stein’s method, monotone oracles and sharp adaptive estimation”, Math. Methods Statist. 10, 247–282 (2001).

    MATH  MathSciNet  Google Scholar 

  9. L. Cavalier and A. Tsybakov, “Sharp adaptation for inverse problems with random noise”, Probab. Theory and Rel. Fields 123, 323–354 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Dalalyan, G. Golubev, and A. Tsybakov, “Penalized maximum likelihood and semiparametric second-order efficiency”, Ann. Statist. 34, 169–201 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Donoho and I. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage”, J. Amer. Statist. Assoc. 90(432), 1200–1224 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  12. S. Yu. Efromovich, Nonparametric Curve Estimation. Methods, Theory, and Applications, in Springer Series in Statistics (Springer, New York, 1999).

    MATH  Google Scholar 

  13. J. Fan and T. Huang, “Profile likelihood inferences on semiparametric varying-coefficient partially linear models”, Bernoulli 11, 1031–1057 (2005).

    MATH  MathSciNet  Google Scholar 

  14. F. Gamboa, J.-M. Loubes, and E. Maza, Shifts estimation for high dimensional data (2005), http://mahery.math.u-psud.fr/:_loubes/.

  15. G. Golubev, “On estimation of time delay of a signal under nuisance parameters”, Probl. Inform. Transmission 25, 3–12 (1990).

    MathSciNet  Google Scholar 

  16. G. Golubev and W. Härdle, “On the second order minimax estimation in partial linear models”, Math. Methods Statist. 2, 160–175 (2000).

    Google Scholar 

  17. G. Golubev and W. Härdle, “On adaptive smoothing in partial linear models”, Math. Methods Statist. 1, 98–117 (2002).

    Google Scholar 

  18. W. Härdle and J. Marron, “Semiparametric comparison of regression curves”, Ann. Statist. 18, 63–89 (1990).

    MATH  MathSciNet  Google Scholar 

  19. W. Härdle and A. Tsybakov, “How sensitivie are average derivatives?”, J. Econometrics, 58, 31–48 (1993).

    Article  MATH  MathSciNet  Google Scholar 

  20. W. James and C. Stein, “Estimation with quadratic loss,” in Proc. Forth Berkeley Symp. Math. Statist. Prob. (Univ. of California Press, 1961), Vol. 1, pp. 361–379.

    MathSciNet  Google Scholar 

  21. K. Kang, W. Kim, and B. Park, “Higher order kernels in adaptive location estimation”, J. Nonparam. Statist. 12(6), 879–888 (2000).

    MATH  MathSciNet  Google Scholar 

  22. M. Lavielle and C. Lévy-Leduc, “Semiparametric estimation of the frequency of unknown periodic functions and its application to laser vibrometry signals,” IEEE Trans. on Signal Processing 53(7), 2306–2315 (2005).

    Article  Google Scholar 

  23. E. Mammen and B. Park, “Optimal smoothing in adaptive location estimation”, J. Statist. Plann. Inference 58(2), 333–348 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Murphy and A. van der Vaart, “On profile likelihood”, J. Amer. Statist. Assoc. 95, 449–485 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  25. V. Petrov, Limit Theorems of Probability Theory. Sequences of Independent Random Variables, in Oxford Studies in Probability (Oxford University Press, New York, 1995), Vol. 4.

    MATH  Google Scholar 

  26. J. Pfanzagl, (1990). Estimation in Semiparametric Models, in Lecture Notes in Statist. (Springer, New York, 1990), Vol. 63.

    MATH  Google Scholar 

  27. M. Pinsker, “Optimal filtering of square integrable signals in Gaussian white noise”, Problems Inform. Transmission 16, 120–133 (1980).

    MATH  Google Scholar 

  28. Ph. Rigollet, “Adaptive density estimation using the blockwise Stein method”, Bernoulli 12(2), 351–370 (2006).

    Article  MATH  MathSciNet  Google Scholar 

  29. C. Stein, “Inadmissibility of the usual estimator for the mean of a multivariate normal distribution”, in Proc. Third Berkeley Symp. Math. Statist. Prob. (Univ. of California Press, 1956), Vol. 1, 197–206.

    Google Scholar 

  30. A. Schick, “Estimating a shift in nonparametric regression via U-statistics”, J. Statist. Plann. Inference 67(2), 259–271 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Schick, “Efficient estimation of a shift in nonparametric regression”, Statist. Probab. Lett. 41(3), 287–301 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  32. T. Severini and W. Wong, “Profile likelihood and conditionally parametric models”, Ann. Statist. 20, 1768–1802 (1992).

    MATH  MathSciNet  Google Scholar 

  33. C. Stone, “Adaptive maximum likelihood estimation of a location parameter”, Ann. Statist. 3, 267–284 (1975).

    MATH  MathSciNet  Google Scholar 

  34. A. Tsybakov, Introduction à l’estimation non-paramétrique, in Mathématiques & Applications (Springer, Berlin, 2004), Vol. 41.

    MATH  Google Scholar 

  35. A. van der Vaart, Semiparametric Statistics (2001), http://www.math.vu.nl/sto/publications.php.

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Dalalyan, A.S. Stein shrinkage and second-order efficiency for semiparametric estimation of the shift. Math. Meth. Stat. 16, 42–62 (2007). https://doi.org/10.3103/S1066530707010048

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066530707010048

Key words

2000 Mathematics Subject Classification

Navigation