Skip to main content
Log in

Bioaugmentation of a sequencing batch reactor with Archaea for the treatment of reject water

  • Biological Methods of Water Treatment
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

In this study, the bioaugmentation of a sequencing batch reactor (SBR) for the treatment of reject water from wastewater treatment plant was evaluated. For the bioaugmentation step a product containing an enrichment of microorganisms from the Archaea domain was used to enhance the performance of the reactor for treating reject water. The experiment was carried out in two parallel lab-scale sequencing batch reactors. The first one (SBR A) was bioaugmented with a suspension of microorganisms from the Archaea domain, while the second reactor (SBR B) was not bioaugmented. The results here presented show that the SBR technology could sustain efficient NH +4 –N and chemical oxyden demand removal rates and can be applied for the treatment of reject water. Moreover, the addition of microorganisms belonging to the Archaea domain improved the SBR overall operation, especially when the loading in the influent was increased. Administering Archaea to the reactor had also a positive effect on ammonia oxidation as well as on the nitrite removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rulkens, W., Energy and Fuels, 2008, vol. 22, pp. 9–15.

    Article  CAS  Google Scholar 

  2. Hwang, Y., Yoneyama, Y., and Noguchi, H., Process Biochem., 2003, vol. 35, pp. 241–1245.

    Google Scholar 

  3. Marttinen, S.K., Ruissalo, M., and Rintala, J.A., J. Environ. Management., 2004, vol. 73, pp. 103–109.

    Article  Google Scholar 

  4. Perez, R., Gali, A., Dosta, J., and Mata-Alvarez, J., Ind. Eng. Chem. Res., vol. 46, pp. 6646–6649.

  5. Berends, D.H.J.G., Salem, S., van der Roest, H.F., and Van Loosdrech, M.C.M., Water Sci. and Technol., 2005, vol. 52, pp. 63–70.

    CAS  Google Scholar 

  6. Pitman, A.R., Water Res., 1999, vol. 33, pp. 1141–1146.

    Article  CAS  Google Scholar 

  7. Von Hulle, S.W.H., Vandeweyer, H.J.P., Meesschaert, B.D., Vanroleghem, P.A., Dejans, P., and Dumoulin, A., Chem. Eng. J., 2010, vol. 162, pp. 1–20.

    Article  Google Scholar 

  8. Van Loosdrecht, M.C.M. and Salem, S., Water Sci. and Technol., 2006, vol. 53, pp. 11–20.

    Article  Google Scholar 

  9. Janus, H.M. and van der Roest, H.F., Ibid., 1997, vol. 35(10), pp. 27–34.

    CAS  Google Scholar 

  10. Wyffels, S., Boeckx, P., Pynaert, K., Zhang, D., Van Cleemput, O., Chen, G., and Verstraete, W., Ibid., 2004, vol. 49, pp. 57–64.

    CAS  Google Scholar 

  11. Salem, S., and Berends, D.H.J.G., Heijnen, J.J., and van der Loosdrecht, M.C.M., Ibid., 2003, vol. 37, pp. 1794–1804.

    CAS  Google Scholar 

  12. Wu, X. and Modin, O., Biores. Technol., 2013, vol. 146, pp. 530–536.

    Article  CAS  Google Scholar 

  13. Ryu, H.D., Kim, D., and Lee, S., J. Hazard. Materials, 2008, vol. 156, pp. 163–169.

    Article  CAS  Google Scholar 

  14. Strous, M., Van Gerven, E., Zheng, P., and Gigs Kuenen, J., Water Res., 1997, vol. 31, pp. 1955–1962.

    Article  CAS  Google Scholar 

  15. Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., Van Loosdrecht, M.C.M., and Heijnen, J.J., Water Sci. and Technol., 1998, vol. 37, pp. 135–142.

    Article  CAS  Google Scholar 

  16. Van Dongen, U., Jetten, M.S.M., and Van Loosdrech, M.C.M., Ibid., 2001, vol. 44, pp. 153–160.

    Google Scholar 

  17. Szakowska, B., Gema, G., Plaza, E., Trela, J., and Hultman, B., Ibid., 2007, vol. 55, pp. 9–26.

    Google Scholar 

  18. Kuai, L. and Verstraete, W., Appl. Environ.Micrbiol., 1998, vol. 64, pp. 4500–4506.

    CAS  Google Scholar 

  19. Mace, S., Mata-Alvarez, J., Lopez-Palau, S., and Mata-Alvarez, J., Water Sci. and Technol., 2008, vol. 58, pp. 5539–5553..

    Google Scholar 

  20. Gali, A., Dosta, J., Lopez-Palau, S., and Mata-Avarez, J., Water Sci. and Technnol., 2008, vol. 58, pp. 467–72.

    Article  CAS  Google Scholar 

  21. Houbron, E., Sanchez, L.A., Zepeda, P., and Rustrian, E., Proc. of the 2nd Int. Symp. On Sequencing Batch Reactor Technology (London, 2000), London: IWA Publishing, 2000, vol. 2, pp. 93–96.

    Google Scholar 

  22. Franta, J. and Wilderer, P.A., Water Sci. and Technol., 1997, vol. 35(1), pp. 129–136.

    Article  CAS  Google Scholar 

  23. Salem, S., Berends, D.H., van der Roest, H.F., van der Kuij, R.J., and Van Loosdrecht, M.C., Ibid, 2004, vol. 50(7), pp. 87–96.

    CAS  Google Scholar 

  24. Herrero, M. and Stuckev, D.C., Chemosphere, 2015, vol. 140, pp. 119–128.

    Article  CAS  Google Scholar 

  25. Rittmann, B.E. and Whiteman, R., Water Quality Int., 1994, vol. 1, pp. 12–16.

    Google Scholar 

  26. Putilina, N.T., Hygiene and Sanitation, 1952, vol. 12, pp. 8–11.

    Google Scholar 

  27. Martin-Hernandez, M., Suarez-Ojeda, M.E., and Carrera, J., Biores. Technol, 2012, vol. 123, pp. 150–156.

    Article  CAS  Google Scholar 

  28. Sipma, J., Osuna, M., Emanuelsson, M., and Castro, P., Crit. Rev. Envron. Sci. Technol., 2010, vol. 40, pp. 147–197.

    Article  Google Scholar 

  29. Park, H.D., Wells, G.F., Bae, H., Criddle, C.S., and Francis, C.A., Appl. Environ. Microbiol., 2006, vol. 72(8), pp. 5643–5647.

    Article  CAS  Google Scholar 

  30. Park, H.D., Wells, G., Bae, H., Criddle, C.S., and Francis, C.A., Ibid., 2006, vol. 72, pp. 543–5647.

    Google Scholar 

  31. Youa, I., Dasa, A., Doland, E., and Hu, Z., Water Res., 2009, vol. 43, pp. 1801–1809.

    Article  Google Scholar 

  32. van der Wielen, P., Voost, S., and van der Kooij, D., Appl. Environ. Microbiol., 2009, vol. 74, pp. 4587–4695.

    Google Scholar 

  33. Zhang, L.M., Hu, H.W., Shen, J.P., and He, J.Z., ISME J., 2012, vol. 6, pp. 1032–1045.

    Article  CAS  Google Scholar 

  34. Wos, P., Dyka, M., Korniluk, M., and Lagod, G., Proc. ECOpole, 2007, vol. 1, pp. 277–281.

    Google Scholar 

  35. Jaromin-Glen, K, Babko, R., Lagod, G., and Sobczuk, H., Ecol. Chemi. And Eng., 2013, 20(1), pp. 127–139.

    Google Scholar 

  36. Supura, E.V. and Demchina, V.P., Proc. of XX Int. Conf. “Ecol. and Technical Safety. Protection of Water and Air. Waste Disposal”, 2012, pp. 176–183.

    Google Scholar 

  37. Lackner, S., Lindenblatt, C., and Horn, H., Chemi. Engi., J., 2012, vol. 180, pp. 190–196.

    Article  CAS  Google Scholar 

  38. Janicek, P., Svehla, P., and Zabranska, J., Reject Water Treatment Nitritation/Denitritation Process—Influence of Ammonia Concentration and Loading Rate. Access Mode: http: //wwwbvsdepahoorg/bvsar/cdlodos/pdf/rjectwater683pdf.

  39. Berends, D.H.J.G., Salem, S., van der Roest, H.F., and Van Loosdrecht, M.C.M., Water Sci and Techol., 2005, vol. 52, pp. 63–70.

    CAS  Google Scholar 

  40. Guz, L., Lagod, G., Jaromin-Glen, K., Suchorab, Z., Sobczuk, H., and Bieganowaki, A., Sensors, 2015, vol. 15, pp. 1–21.

    Article  CAS  Google Scholar 

  41. Babko, R., Jaromin-Glen, K.M., Lagod, G., Pawcowska, M., and Pawlowski, A., Desalination and Water Treatment, 2016, vol. 57, pp. 1490–1498.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lagód.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szaja, A., Lagód, G., Drewnowski, J. et al. Bioaugmentation of a sequencing batch reactor with Archaea for the treatment of reject water. J. Water Chem. Technol. 38, 238–243 (2016). https://doi.org/10.3103/S1063455X16040093

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X16040093

Keywords

Navigation