Skip to main content
Log in

Discrete ULF modes in the Earth’s magnetosphere near the Alfven frequency minimum

  • Space Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The equation of small oscillations of ULF waves in the Earth’s magnetosphere is derived accounting for a fast magnetosonic wave. The spectrum of discrete Alfven modes near the Alfven frequency minimum is studied on the basis of this equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Bateman and A. Erdélyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1974), Vol.2.

    MATH  Google Scholar 

  2. M. Goossens, “MHD waves and wave heating in nonuniform plasmas,” in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge Univ. Press, Cambridge, 1991; Mir, Moscow, 1995), p.135.

    Google Scholar 

  3. D. Yu. Klimushkin, “Spatial structure of small-scale azimuthal hydrodynamic waves in an axisymmetric magnetospheric plasma with finite pressure,” Plasma Phys. Rep. 23, 858–871 (1997).

    ADS  Google Scholar 

  4. Yu. P. Ladikov-Roev and S. O. Cheremnykh, “On the plasma pressure distribution in the equatorial region of the Earth’s magnetosphere,” Kosm. Nauka Tekhnol. 16 (1), 86–89 (2010).

    Google Scholar 

  5. N. G. Mazur, E. N. Fedorov, and V. A. Pilipenko, “Dispersion relation for ballooning modes and condition of their stability in the near-earth plasma,” Geomagn. Aeron. (Engl. Transl.) 52, 603–612 (2012).

    Article  ADS  Google Scholar 

  6. A. Nishida, Geomagnetic Diagnosis of the Magnetosphere (Springer-Verlag, New York, 1978; Mir, Moscow, 1980).

    Book  Google Scholar 

  7. A. S. Parnowski and O. K. Cheremnykh, “Spectrum of ballooning perturbations with arbitrary polarization in the inner magnetosphere of the Earth,” Kosm. Nauka Tekhnol. 12 (1), 49–56 (2006).

    ADS  Google Scholar 

  8. E. R. Priest, Solar Magnetohydrodynamics (Reidel, Dordrecht, 1982; Mir, Moscow, 1985).

    Book  Google Scholar 

  9. V. D. Pustovitov and V. D. Shafranov, “Equilibrium and stability of plasma in stellarators,” Vopr. Teor. Plazmy, No. 15, 146–293 (1987).

    Google Scholar 

  10. B. Roberte, “MHD waves in the Sun,” in Advances in Solar System Magnetohydrodynamics, Ed. by E. R. Priest and A. W. Hood (Cambridge University Press, Cambridge, 1991; Mir, Moscow, 1995), p.105.

    Google Scholar 

  11. O. K. Cheremnykh, D. Yu. Klimushkin, and D. V. Kostarev, “On the structure of azimuthally small-scale ULF oscillations of hot space plasma in a curved magnetic field. Modes with continuous spectrum,” Kinematics Phys. Celestial Bodies 30, 209–222 (2014).

    Article  ADS  Google Scholar 

  12. O. K. Cheremnykh, D. Yu. Klimushkin, and P. N. Mager, “On the structure of azimuthally small-scale ULF oscillations of a hot space plasma in a curved magnetic field: Modes with discrete spectra,” Kinematics Phys. Celestial Bodies 32, 120–128 (2016).

    Article  ADS  Google Scholar 

  13. S. O. Cheremnykh, “On the polarization of transversally small-scale MHD modes in the Earth’s magnetosphere,” Kosm. Nauka Tekhnol. 19, 57–64 (2013).

    Article  Google Scholar 

  14. O. Agapitov and O. Cheremnykh, “Magnetospheric ULF waves driven by external sources” (2015). https://arxiv.org/abs/1512.00919.

    Google Scholar 

  15. O. Agapitov and O. Cheremnykh, “Natural oscillations of the Earth magnetosphere associated with solar wind sudden impulses,” Ukr. J. Phys. 53, 508–512 (2008).

    Google Scholar 

  16. Zh. N. Andrushchenko, O. K. Cheremnykh, and J. W. Edenstrasser, “Global Alfvén eigenmodes in a stellarator with trapped energetic particles,” Phys. Plasmas 6, 2462–2471 (1999).

    Article  ADS  Google Scholar 

  17. O. S. Burdo, O. K. Cheremnykh, and O. P. Verkhoglyadova, “Study of ballooning modes in the inner magnetosphere of the Earth,” Izv. Ross. Akad. Nauk, Ser. Fiz. 64, 1896–1900 (2000).

    Google Scholar 

  18. C. Z. Cheng, “Magnetospheric equilibrium with anisotropic pressure,” J. Geophys. Res.: Space Phys. 97, 1497–1510 (1992).

    Article  ADS  Google Scholar 

  19. O. K. Cheremnykh and S. M. Revenchuk, “Dispersion relations for the Suydam problem,” Plasma Phys. Controlled Fusion 34, 55–75 (1992).

    Article  ADS  Google Scholar 

  20. O. K. Cheremnykh and A. S. Parnowski, “Flute and ballooning modes in the inner magnetosphere of the Earth: Stability and influence of the ionospheric conductivity,” in Space Science: New Research, Ed. by N. S. Maravell (Nova Sci., New York, 2006), pp. 97–139.

    Google Scholar 

  21. O. K. Cheremnykh, “Transversally small-scale perturbations in arbitrary plasma configurations with magnetic surfaces,” Plasma Phys. Controlled Fusion 52, 095006 (2010).

    Article  ADS  Google Scholar 

  22. O. K. Cheremnykh and V. V. Danilova, “Transversal small-scale MHD perturbations in space plasma with magnetic surfaces,” Kinematics Phys. Celestial Bodies 27, 98–108 (2011).

    Article  ADS  Google Scholar 

  23. S. O. Cheremnykh and O. V. Agapitov, “MHD waves in the plasma system with dipole magnetic field configuration,” Adv. Astron. Space Phys. 2, 103–106 (2012).

    ADS  Google Scholar 

  24. P. M. Edwin and B. Roberts, “Wave propagation in a magnetic cylinder,” Sol. Phys. 88, 179–191 (1983).

    Article  ADS  Google Scholar 

  25. R. Erdélyi and V. Fedun, “Linear MHD sausage waves in compressible magnetically twisted flux tubes,” Sol. Phys. 246, 101–118 (2007).

    Article  ADS  Google Scholar 

  26. E. Hameiri and M. G. Kivelson, “Magnetospheric waves and the atmosphere–ionosphere layer,” J. Geophys. Res.: Space Phys. 96, 21125–21134 (1991).

    Article  ADS  Google Scholar 

  27. F. Hameiri, P. Laurence, and M. Mond, “The ballooning instability in space plasmas,” J. Geophys. Res.: Space Phys. 96, 1513–1526 (1991).

    Article  ADS  Google Scholar 

  28. A. S. Leonovich, D. A. Kozlov, and V. A. Pilipenko, “Magnetosonic resonance in a dipole-like magnetosphere,” Ann. Geophys. 24, 2277–2289 (2006).

    Article  ADS  Google Scholar 

  29. P. N. Mager, D. Yu. Klimushkin, V. A. Pilipenko, and S. Schäfer, “Field-aligned structure of poloidal Alfvén waves in a finite pressure plasma,” Ann. Geophys. 27, 3875–3882 (2009).

    Article  ADS  Google Scholar 

  30. S. M. Mahajan, D. W. Ross, and G. L. Chen, “Discrete Alfvén eigenmode spectrum in magnetohydrodynamics,” Phys. Fluids 26, 2195–2199 (1983).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Cheremnykh.

Additional information

Original Russian Text © S.O. Cheremnykh, I.T. Zhuk, 2017, published in Kinematika i Fizika Nebesnykh Tel, 2017, Vol. 33, No. 1, pp. 38–54.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheremnykh, S.O., Zhuk, I.T. Discrete ULF modes in the Earth’s magnetosphere near the Alfven frequency minimum. Kinemat. Phys. Celest. Bodies 33, 13–23 (2017). https://doi.org/10.3103/S0884591317010020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591317010020

Navigation