Skip to main content
Log in

On the possibility of the development of longitudinal wave instabilities on the background of the small-scale Bernstein turbulence in preflare chromosphere of a solar active region

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The process of origination and development of instabilities of the longitudinal waves of two types, namely, low-frequency ion-acoustic and high-frequency (“electronic”) Langmuir waves, in the preflare atmosphere of an active solar region are studied. The area under study is located at the chromospheric part of the flare loop near its footpoint. A weak large-scale electric field of flaring loop is the main source of these instabilities. The velocity of an electronic flow in the preflare plasma is supposed to be much lower than thermal electron velocity. Instability development is considered against the background of small-scale Bernstein wave turbulence, which exists in the preflare plasma and has an extremely low threshold of excitation. The necessary conditions for the instability origination and development, as well as the boundary values of the main plasma and wave perturbation parameters, are calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Aleksandrov, L. S. Bogdankevich, and A. A. Rukhadze, Plasma Hydrodynamics Foundations (Vysshaya shkola, Moscow, 1989) [in Russian].

    Google Scholar 

  2. A. T. Altyntsev, V. G. Banin, G. V. Kuklin, and V. M. Tomozov, Solar Bursts (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  3. G. Grim, Broadening of Spectral Lines in Plasma (Mir, Moscow, 1978) [in Russian].

    Google Scholar 

  4. V. V. Zaitsev, A. P. Stepanov, and Yu. T. Tsap, “Some problems of solar and star flare physics,” Kinematika Fiz. Nebesnykh Tel 10(6), 3–31 (1994).

    ADS  Google Scholar 

  5. A. N. Krishtal’, S. V. Gerasimenko, and A. D. Voitsekhovskaya, “To the question of possibility of appearance of preflare current sheathes in the chromosphere of an active solar region,” Kosm. Nauka Tekhnol. 18(3), 52–60 (2012).

    Google Scholar 

  6. A. N. Krishtal’, S. V. Gerasimenko, A. D. Voitsekhovskaya, and A. A. Solov’ev, “To the question of a possibility of development of Langmuir turbulence development during the early stage of a flare process,” Kosm. Nauka Tekhnol. 15(5), 59–67 (2009).

    Google Scholar 

  7. V. E. Reznikova, V. F. Mel’nikov, S. P. Gorbikov, and K. Shibasaki, “Dynamics of radio brightness distribution along a flaring loop,” in Abstracts of the Conf. “Plasma Physics in the Solar System”, Moscow, SPI RAS, February 5–8, 2008 (SRI RAS, Moscow, 2008), p. 17 [in Russian].

    Google Scholar 

  8. B. V. Somov, V. S. Titov, and A. I. Vernetta, “Magnetic reconnection in solar flares,” in Science and Engineering Results Summary, Available from VINITI. Astronomiya 34, 136–237 (1987) [in Russian].

    Google Scholar 

  9. Yu. E. Charikov, “Preflare stage of energy accumulation: New observations and possible mechanisms,” in Abstracts of the 11th Pulkovo Intern. Conf. on Solar Physics, MAO RAS, Pulkovo, St. Petersburg, July 2–7, 2007 (St. Petersburg, 2007), pp. 138–139 [in Russian].

    Google Scholar 

  10. F. F. Chen, Introduction to Plasma Physics and Controlled Fusion (Plenum, New York, 1984).

    Book  Google Scholar 

  11. O. A. Sheiner and V. M. Fridman, “Microwave radiation structure in view of the plasma diagnostics in the solar atmosphere,” in Abstracts of the Conf. “Plasma Physics in the Solar System”, Moscow, SPI RAS, February 5–8, 2008 (SRI RAS, Moscow, 2008), p. 10 [in Russian].

    Google Scholar 

  12. M. I. Aschwanden, “An evaluation of coronal heating models for active regions based on Yohkoh, SOHO and TRACE observations,” Astrophys. J. 560, 1035–1043 (2001).

    Article  ADS  Google Scholar 

  13. J. M. Fontenla, E. H. Avrett, and R. Loeser, “Energy balance in solar transition region. III. Helium emission in hydrostatic, constant-abundance models with diffusion,” Astrophys. J. 406(1), 327–336 (1993).

    ADS  Google Scholar 

  14. P. Foukal and S. Hinata, “Electric fields in the solar atmosphere: A review,” Solar Phys. 132(2), 307–334 (1991).

    Article  ADS  Google Scholar 

  15. A. A. Galeev, D. Lominadze, A. Pataria, et al., “Anomalous resistance of plasma due to the instability of the cyclotron harmonics,” Zh. Eksp. Teor. Fiz., 417–420 (1972).

    Google Scholar 

  16. A. A. Galeev and R. Z. Sagdeev, “Nonlinear plasma theory,” Probl. Plasma Theory 7, 3–48 (1973).

    Google Scholar 

  17. A. A. Galeev and R. Z. Sagdeev, “Current instabilities and anomalous resistance of plasma,” in Handbook of Plasma Physics. Basic Plasma Physics, Ed. by A. A. Galeev and R. N. Sudan (Amsterdam, 1984), Vol. 2, pp. 272–303.

    Google Scholar 

  18. J. Heyvaerts, E. R. Priest, and D. M. Rust, “Models of solar flares,” Astrophys. J. 216, 213–221 (1977).

    Article  ADS  Google Scholar 

  19. A. N. Kryshtal, “Bernstein wave instability in a collisional plasma with a quasistatic electric field,” J. Plas. Phys. 60(3), 469–484 (1998).

    Article  ADS  Google Scholar 

  20. A. N. Kryshtal, S. V. Gerasimenko, and A. D. Voitsekhovska, ““Oblique” Bernstein modes in solar preflare plasma: Generation of second harmonics,” Adv. Space Res. 49, 791–796 (2012).

    Article  ADS  Google Scholar 

  21. A. N. Kryshtal and V. P. Kucherenko, “A possible excitation mechanism for a longitudinal wave instability in a plasma by a quasi-static electric field,” J. Plasma. Phys 53(2), 169–183 (1995).

    Article  ADS  Google Scholar 

  22. A. N. Kryshtal and V. P. Kucherenko, “Ion-acoustic instability caused by large-scale electric field in solar active regions,” Solar Phys. 165(1), 139–153 (1996).

    Article  ADS  Google Scholar 

  23. M. E. Machado, E. H. Evrett, J. E. Vernazza, and R. W. Noyes, “Semiempirical models of chromospheric flare regions,” Astrophys. J. 242(1), 336–351 (1980).

    Article  ADS  Google Scholar 

  24. V. F. Melnikov, K. Shibasaki, and V. E. Reznikova, “Loop-top nonthermal microwave source in extended solar flaring loops,” Astrophys. J. 580, L185–L188 (2002).

    Article  ADS  Google Scholar 

  25. I. A. Miller, P. I. Cargil, A. G. Emslie, et al., “Critical issues for understanding particle acceleration in impulsive solar flares,” J. Geophys. Res. 102(A7), 14631–14659 (1997).

    Article  ADS  Google Scholar 

  26. D. Pines and J. R. Schrieffer, “Collective behavior in solid-state plasmas,” Phys. Rev. 124(5), 1387–1400 (1961).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. S. K. Solanki, “Small-scale solar magnetic fields: An overview,” Space Sci. Revs. 63, 1–183 (1993).

    Article  ADS  Google Scholar 

  28. J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the solar chromosphere. III. Models of the EUV brightness components of the quiet-sun,” Astrophys. J., Suppl. Ser. 45(1), 635–725 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kryshtal.

Additional information

Original Russian Text © A.N. Kryshtal, A.D. Voitsekhovska, S.V. Gerasimenko, M.V. Sidorenko, 2014, published in Kinematika i Fizika Nebesnykh Tel, 2014, Vol. 30, No. 5, pp. 39–55.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kryshtal, A.N., Voitsekhovska, A.D., Gerasimenko, S.V. et al. On the possibility of the development of longitudinal wave instabilities on the background of the small-scale Bernstein turbulence in preflare chromosphere of a solar active region. Kinemat. Phys. Celest. Bodies 30, 234–243 (2014). https://doi.org/10.3103/S0884591314050043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591314050043

Keywords

Navigation