Skip to main content
Log in

Accurate modeling of nanoscale gate underlap SOI MOSFET and design of low noise amplifier for RF applications

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Paper presents an accurate model by accounting non-quasi-static and extrinsic parasitic effects for 90 nm gate underlap SOI MOSFETs for RF applications. Generated Y-parameters from the model up to 20 GHz matched very well with 2D ATLAS (with an average error of ∼5%), whereas results from quasi-static predictive technology model differ significantly (>20%). Calculated transit frequency f T and maximum frequency of oscillation f max have been found as ∼108 and ∼130 GHz respectively. Simulated noise figure at drain-to-source current I DS ≈ 0.64mA and drain-to-source voltage V DS=1 V was found to be ≈2.8 dB with gate resistance R ge = 3 Ω. A low noise amplifier (LNA) designed at operating frequency of 5.8 GHz using the model has shown good match at input (S 11 ≈ −15 dB), output (S 22 ≈ −16 dB) and gain (S 21 ≈ 15 dB). A new figure-of-merit of LNA (FoMLNA) involving signal power gain G, noise factor F and dc power consumption P dc has been proposed. By comparing with limited available measured data of 180 nm bulk, it has been found that underlap LNA (simulated using the developed model) gives almost three times improvement in the proposed FoMLNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. L. Chen, R. H. Mathews, J. A. Burns, P. W. Wyatt, D.-R. Yost, C. K. Chen, M. Fritze, J. M. Knecht, V. Suntharalingam, A. Soares, C. L. Keast, “High-frequency characterization of sub-0.25-um fully depleted siliconon-insulator MOSFETs,” IEEE Electron Device Lett. 21,No. 10, 497 (Oct. 2000). doi: 10.1109/55.870613.

    Article  Google Scholar 

  2. Steve H. Jen, Christian Enz, David R. Pehlke, Michael Schröter, Bing J. Sheu, “A high-frequency MOS transistor model and its effects on radio-frequency circuits,” Analog Integr. Circ. Signal Process. 23, 93 (May 2000). doi: 10.1023/A:1008399824651.

    Article  Google Scholar 

  3. In Man Kang, “Non-quasi-static RF model for SOI FinFET and its verification,” J. Semiconductor Technol. Sci. 10,No. 2, 160 (June 2010).

    Article  Google Scholar 

  4. In Man Kang and Hyungcheol Shin, “Non-quasi-static small-signal modelling and analytical parameter extraction of SOI FinFETs,” IEEE Trans. Nanotechnol. 5,No. 3, 205 (May 2006). doi: 10.1109/TNANO.2006.869946.

    Article  MathSciNet  Google Scholar 

  5. Yoshiyuki Shimizu, Gue Chol Kim, Bunsei Murakami, et al. “Drain current response delay of FD-SOI MOSFETs in RF operation,” IEICE Electron. Expr. 1,No. 16, 518 (2004). doi: 10.1587/elex.1.518.

    Article  Google Scholar 

  6. A. Kranti, J. P. Raskin, and G. A. Armstrong, “Source/Drain engineered ultra low power analog/RF UTBB MOSFETs,” in Proc. of 12th IEEE Int. Conf. Ultimate Integration on Silicon, ULIS-2011 (2011). doi: 10.1109/ULIS.2011.5757997.

    Google Scholar 

  7. Indra Vijay Singh, M. S. Alam, and G. A. Armstrong, “Design of low noise amplifier using 90nm gate underlap SOI MOSFETs for millimeter-wave applications,” in Proc. of IEEE Int. Conf. Multimedia, Signal Processing and Communication Technologies, IMPACT-2011 (2011). doi: 10.1109/MSPCT.2011.6150501.

    Google Scholar 

  8. ATLAS manual-2011, http://www.silvaco.com.

  9. University of California at Berkeley, USA, http://www.device.eecs.berkeley.edu/PTM.

  10. S. S. Suryagandh, M. Garg, and J. C. S. Woo, “A device design methodology for sub-100-nm SOC applications using bulk and SOI MOSFETs,” IEEE Trans. Electron Devices 51,No. 7, 1122 (2004). doi: 10.1109/TED.2004.829872.

    Article  Google Scholar 

  11. Alina Caddemi, Giovanni Crupi, and Alessio Macchiarella, “On wafer-scaled GaAs HEMTs: Direct and robust small signal modelling up to 50 GHz,” Microw. Opt. Technol. Lett. 51,No. 8, 1958 (Aug. 2009). doi: 10.1002/mop.24492.

    Article  Google Scholar 

  12. Rajesh Kumar Prabakaran, Ananjan Basu, and Shiban K Koul, “A Novel approach to the design of MESFET-based MMIC switches using common-gate parameter extraction,” IETE J. Res. 57,No. 5, 407 (2011). doi: 10.4103/0377-2063.90149.

    Article  Google Scholar 

  13. Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. (McGraw-Hill, New York, 1999).

    Google Scholar 

  14. L. Poulain, N. Waldhoff, D. Gloria, F. Danneville, and G. Dambrine, “Small signal and HF noise performance of 45 nm CMOS technology in mmW range,” in Proc. of IEEE Radio Frequency Integrated Circuits Symposium, RFIC-2011 (2011). doi: 10.1109/RFIC.2011.5940646.

    Google Scholar 

  15. Jong-Tae Park and Jean-Pierre Colinge, “Multiple-Gate SOI MOSFETs: device design guidelines,” IEEE Trans. Electron Devices 49,No. 12, 2222 (2002). doi: 10.1109/TED.2002.805634.

    Article  Google Scholar 

  16. Advanced Design Sytem (ADS-2011), http://www.agelent.com.

  17. G. Crupi, D. M. M. Schreurs, A. Raffo, A. Caddemi, and G. Vannini, “A new millimeter-wave small-signal modeling approach for pHEMTs accounting for the output conductance time delay,” IEEE Trans. Microwave Theory Tech. 56,No. 4, 741 (2008). doi: 10.1109/TMTT.2008.918147.

    Article  Google Scholar 

  18. B. Doris, “Device design considerations for ultra-thin SOI MOSFETs,” Technical Digest of IEEE Int. Electron Devices Meeting, IEDM’03 (2003), pp. 631–634. doi: 10.1109/IEDM.2003.1269360.

    Google Scholar 

  19. Tao Chuan Lim and G. A. Armstrong, “The impact of the intrinsic and extrinsic resistance of double gate SOI on RF performance,” Solid State Electron. 50,No. 5, 774 (2006). doi: 10.1016/j.sse.2006.04.010.

    Article  Google Scholar 

  20. T. H. Lee, The Design of CMOS Radio frequency Integrated Circuits, 2nd ed. (Cambridge University Press, 2003).

    Book  Google Scholar 

  21. Ickhyun Song, Jongwook Jeon, Hee-Sauk Jhon, Junsoo Kim, Byung-Gook Park, Jong Duk Lee, Hyungcheol Shin, “A simple figure of merit of RF MOSFET for low noise amplifier design,” IEEE Electron Device Lett. 29,No. 12, 1380 (2008). doi: 10.1109/LED.2008.2006863.

    Article  Google Scholar 

  22. Saman Asgaran, M. Jamal Deen, and Chin-Hung Chen, “A 4-mW monolithic CMOS LNA at 5.7GHz with the gate resistance used for input matching,” IEEE Microwave Wireless Compon. Lett. 16,No. 4, 188 (April 2006). doi: 10.1109/LMWC.2006.872128.

    Article  Google Scholar 

  23. Y. S. Wang and L.-H. Lu, “5.7 GHz low-power variable-gain LNA in 0.18 μm CMOS,” Electron. Lett. 41,No. 2, 66 (2005). doi: 10.1049/el:20057230.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.V. Singh, M.S. Alam, G.A. Armstrong, 2013, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2013, Vol. 56, No. 6, pp. 3–18.

About this article

Cite this article

Singh, I.V., Alam, M.S. & Armstrong, G.A. Accurate modeling of nanoscale gate underlap SOI MOSFET and design of low noise amplifier for RF applications. Radioelectron.Commun.Syst. 56, 265–277 (2013). https://doi.org/10.3103/S0735272713060010

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272713060010

Keywords

Navigation