Skip to main content
Log in

Porous carbon material based on petroleum pitch

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The samples of granulated (2–4 mm) porous carbon material with unimodal and bimodal poresize distributions were prepared. The sample with a unimodal porous structure was prepared via the mixing of soot and petroleum pitch followed by carbonization (the first stage). At the second stage, the carbon material obtained was ground to a particle size smaller than 0.2 mm, mixed with petroleum pitch, and also subjected to carbonization. The porous structures of these materials were studied by scanning electron microscopy and mercury porosimetry. It was established that the predominant pore size (20–1000 nm) of the samples with the unimodal structure depends on the used soot grade. At the second stage of the process, a considerable volume of pores in a range of 4–12 μm is formed in the production of bidisperse material. As compared with a sample with the monodisperse structure, porous carbon material with a bimodal distribution of pores was characterized by a lower crushing strength of granules and comparable specific surface areas, total pore volumes, and ash contents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auer, E., Freund, A., Pietsch, J., and Tacke, T., Appl. Catal., A, 1998, vol. 173, no. 2, p. 259.

    Article  CAS  Google Scholar 

  2. Stiles, A.B., Nositeli i nanesennye katalizatory. Teoriya i praktika (Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts), Slinkin, A.A., Ed. of the Russian translation, Moscow: Khimiya, 1991.

  3. Stiles, A.B., Catalyst Supports and Supported Catalysts: Theoretical and Applied Concepts, Boston: Butterworths, 1987.

    Google Scholar 

  4. Sittig, M., Izvlechenie metallov i neorganicheskikh soedinenii iz otkhodov (Metal and Inorganic Waste Reclaiming Encyclopedia), Emanuel’, N.M., Ed. of the Russian translation, Moscow: Metallurgiya, 1985.

  5. Sittig, M., Metal and Inorganic Waste Reclaiming Encyclopedia, Park Ridge: Noyes Data Corp., 1980.

    Google Scholar 

  6. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, London: Elsevier, 2006.

    Google Scholar 

  7. Boreskov, G.K., Geterogennyi kataliz (Heterogeneous Catalysis), Moscow: Nauka, 1986.

    Google Scholar 

  8. Gheorghiu, S. and Coppens, M.-O., React., Kinet., Catal., 2004, vol. 50, no. 4, p. 812.

    CAS  Google Scholar 

  9. Kel’tsev, N.V., Osnovy adsorbtsionnoi tekhniki (Basics of Adsorption Instrumentation), Moscow: Khimiya, 1976.

    Google Scholar 

  10. Kim, Y., Kim, C., and Yi, J., Mater. Res. Bull., 2004, vol. 39, no. 13, p. 2103.

    Article  CAS  Google Scholar 

  11. Coppens, M.-O., Sun, J., and Maschmeyer, T., Catal. Today, 2001, vol. 69, nos. 1–4, p. 331.

    Article  CAS  Google Scholar 

  12. Sun, G., Li, K., Xie, L., et al., Micropor. Mesopor. Mater., 2012, vol. 151, p. 282.

    Article  CAS  Google Scholar 

  13. Cai, T., Zhou, M., Han, G., and Guan, S., J. Power Sources, 2013, vol. 241, p. 6.

    Article  CAS  Google Scholar 

  14. Lu, A.-H., Schmidt, W., Spliethoff, B., and Schuth, F., Adv. Mater., 2003, vol. 15, no. 19, p. 1602.

    Article  CAS  Google Scholar 

  15. Kugatov, P.V. and Zhirnov, B.S., J. Porous Mater., 2013, vol. 20, no. 4, p. 875.

    Article  CAS  Google Scholar 

  16. Plachenov, T.G. and Kolosentsev, S.D., Porometriya (Porosimetry), Leningrad: Khimiya, 1988.

    Google Scholar 

  17. Rubinshtein, A.M. and Klyachko-Gurvich, A.L., Kinet. Katal., 1962, vol. 3, no. 4, p. 599.

    Google Scholar 

  18. Rubinshtein, A.M. and Afanas’ev, V.A., Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1956, no. 11, p. 1294.

    Google Scholar 

  19. Kiselev, A.V., Iogansen, A.V., Sakodynskii, K.I., et al., Fiziko-khimicheskoe primenenie gazovoi khromatografii (Physicochemical Application of Gas Chromatography), Moscow: Khimiya, 1973.

    Google Scholar 

  20. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309.

    Article  CAS  Google Scholar 

  21. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Adsorption: Texture of Dispersed and Porous Materials), Novosibirsk: Nauka, Sib. Otd. Ross. Akad. Nauk, 1999.

    Google Scholar 

  22. McClellan, A.L. and Harnsberger, H.F., J. Colloid Interface Sci., 1967, vol. 23, no. 4, p. 577.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kugatov.

Additional information

Original Russian Text © P.V. Kugatov, I.I. Bashirov, B.S. Zhirnov, 2014, published in Khimiya Tverdogo Topliva, 2014, No. 5, pp. 21–25.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kugatov, P.V., Bashirov, I.I. & Zhirnov, B.S. Porous carbon material based on petroleum pitch. Solid Fuel Chem. 48, 293–297 (2014). https://doi.org/10.3103/S0361521914050061

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521914050061

Keywords

Navigation