Skip to main content
Log in

Alkaline activation of the donbass coals of different ranks

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The effect of the rank of coal (Cdaf = 80−95.2%) on the yield and characteristics of activated carbons prepared under the conditions of alkaline activation (800°C, 1 h, Ar) at KOH/coal ratios of 1 g/g was studied. Under these conditions, the ability of coals to form porous materials decreased in the metamorphic series. Grade D coal (Cdaf = 80%) exhibited a maximum activation ability to form a material with S BET = 1560 m2/g, V Σ = 0.71 cm3/g, and V mi = 0.51 cm3/g. A minimum activation ability was found in anthracite (Cdaf = 95.2%), which forms activated carbon with poorly developed porosity (S BET = 306 m2/g, V Σ = 0.15 cm3/g, and V mi = 0.11 cm3/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Marsh, H. and Rodriguez-Reinoso, F., Activated Carbon, Amsterdam: Elsevier, 2006.

    Google Scholar 

  2. Guy, P.J. and Perry, G.J., Fuel, 1992, vol. 71, no. 10, p. 1083.

    Article  CAS  Google Scholar 

  3. Amarasekera, G., Scarlett, M.J., and Mainwaring, D.E., Carbon, 1998, vol. 36, nos. 7–8, p. 1071.

    Article  CAS  Google Scholar 

  4. Guy, P.J., Verheyen, T.V., Heng, S., Felber, M.D., and Perry, G.J., Proc. 1989 ICCS, Tokyo, 1989, vol. 1, p. 21.

    Google Scholar 

  5. Lillo-Rodenas, M.-A., Cazorla-Amoros, D., and Linares-Solano, A., Carbon, 2003, vol. 41, no. 2, p. 267.

    Article  CAS  Google Scholar 

  6. Yoshizawa, N., Maruyama, K., Yamada, Y., et al., Fuel, 2002, vol. 81, no. 15, p. 1717.

    Article  CAS  Google Scholar 

  7. Lillo-Rodenas, M.A., Marco-Lozar, J.P., Cazorla-Amoros, D., and Linares-Solano, A., J. Anal. Appl. Pyrolysis, 2007, vol. 80, no. 1, p. 166.

    Article  CAS  Google Scholar 

  8. Mikova, N.M., Chesnokov, N.V., and Kuznetsov, B.N., J. Siberian Federal Univ., 2009, vol. 1, no. 2, p. 3.

    Google Scholar 

  9. Nowicki, P., Pietrzak, R., and Wachowska, H., Fuel, 2008, vol. 87, nos. 10–11, p. 2037.

    Article  CAS  Google Scholar 

  10. Bleda-Martinez, M.J., Macia-Agullo, J.A., Lozano-Castello, D., et al., Carbon, 2005, vol. 45, p. 2677.

    Article  Google Scholar 

  11. Kucherenko, V.A., Shendrik, T.G., Tamarkina, Yu.V., and Mysyk, R.D., Carbon, 2010, vol. 48, no. 15, p. 4556.

    Article  CAS  Google Scholar 

  12. Tamarkna Yu.V., Khabarova T.V., Shendrek T.G., and Kucherenko V.O., Ukraine Patent 61059, Byull. Izobret., 2011, no. 13, p. 5.

    Google Scholar 

  13. Fuente, E., Gil, R.R., Giron, R.P., et al., Carbon, 2010, vol. 48, no. 4, p. 1032.

    Article  CAS  Google Scholar 

  14. Robau-Sanchez, A., Cordero-De-La Rosa F., Aguilar-Pliego J., and Aguilar-Elguezabal A, J. Porous Mater., 2006, vol. 13, no. 2, p. 123.

    Article  CAS  Google Scholar 

  15. Tamarkina, Yu.V., Maslova, L.A., Khabarova, T.V., and Kucherenko, V.A., Zh. Prikl. Khim., 2008, vol. 81, no. 7, p. 1088.

    Google Scholar 

  16. Brunauer, S., Emmett, P.H., and Teller, E., J. Am. Chem. Soc., 1938, vol. 60, no. 2, p. 309.

    Article  CAS  Google Scholar 

  17. Dubinin, M.M., Carbon, 1989, vol. 27, no. 3, p. 457.

    Article  CAS  Google Scholar 

  18. Ravikovitch, P.I., Vishnyakov, A., Russo, R., and Neimark, A.V., Langmuir, 2000, vol. 16, no. 5, p. D. 2311.

    Article  Google Scholar 

  19. Barret, E.P., Joyner, L.C., and Halenda, P.P., J. Am. Chem. Soc., 1951, vol. 73, no. 1, p. 373.

    Article  Google Scholar 

  20. Xia, K., Gao, Q., Wu, C., Song, S., and Ruan, M., Carbon, 2007, vol. 45, no. 10, p. 1989.

    Article  CAS  Google Scholar 

  21. Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, P.L., Science, 2006, vol. 313, no. 5794, p. 1760.

    Article  CAS  Google Scholar 

  22. Sing, K.S.W., Everett, D.H., Haul, R.A.W., et al., Pure Appl. Chem., 1985, vol. 57, no. 4, p. 603.

    Article  CAS  Google Scholar 

  23. Kiselev, V.F. and Krylov, O.V., Adsorbtsionnye protsessy na poverkhnosti poluprovodnikov i dielektrikov (Adsorption Processes on the Surfaces of Semiconductors and Dielectrics), Moscow: Nauka, 1999, part 3, p. 28.

    Google Scholar 

  24. Kutarov, V.V., Robens, E., Tarasevich, Yu.I., and Aksenenko, E.V., Teor. Eksp. Khim., 2011, vol. 47, no. 3, p. 156.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Tamarkina.

Additional information

Original Russian Text © Yu.V. Tamarkina, V.A. Kucherenko, T.G. Shendrik, 2013, published in Khimiya Tverdogo Topliva, 2013, No. 1, pp. 3–7.

About this article

Cite this article

Tamarkina, Y.V., Kucherenko, V.A. & Shendrik, T.G. Alkaline activation of the donbass coals of different ranks. Solid Fuel Chem. 47, 1–6 (2013). https://doi.org/10.3103/S0361521913010096

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521913010096

Keywords

Navigation