Skip to main content
Log in

Toxicity of gold nanoparticles for plants in experimental aquatic system

  • Ecology
  • Published:
Moscow University Biological Sciences Bulletin Aims and scope Submit manuscript

Abstract

Increased production and use of nanomaterials can lead to new types of pollution of the environment, including aquatic ecosystems. Pollution of the aqueous environment with nanoparticles can be a new type of pollution of the environment. This requires a more detailed study of the biological effects during exposure of nanoparticles on aquatic organisms. The interactions of gold nanoparticles (Au) with aquatic macrophytes Ceratophyllum demersum have been studied. Aquatic microcosms with these plants were used. Gold nanoparticles (Au) were added to the aqueous medium of C. demersum macrophyte containing microcosms. The state of the plants was then analyzed. Phytotoxicity of Au nanoparticles for aquatic macrophytes was shown for the first time. A new method of phytotoxicity detection was suggested and successfully approved. Phytotoxicity at a concentration of Au (in the form of nanoparticles) of 6 × 10−6 M-1.8 × 10−5 M was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V.M., Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett., 2010, vol. 8, no. 3, pp. 199–216.

    Article  CAS  Google Scholar 

  2. Ermakov, V.V. and Tyutikov, S.F., Geokhimicheskaya ekologiya zhivotnykh (Geochemical Ecology of Animals), Moscow: Nauka, 2008.

    Google Scholar 

  3. Ostroumov, S.A., Triton X-100, Toxicol. Rev., 1999, no. 4, p. 41.

    Google Scholar 

  4. Ostroumov, S.A., Cadmium sulphate: effect on mussels, Toxicol. Rev., 2004, no. 6, pp. 36–37.

    Google Scholar 

  5. Ostroumov, S.A., Potassium fluotitanate (impact on water filtration mussels Mytilus galloprovincialis), Toxicol. Rev., 2007, no. 3, pp. 39–40.

    Google Scholar 

  6. Ostroumov, S.A. and Solomonova, E.A., Synthetic detergent “aist-universal:” impact on Fontinalis antipyretica Hedw, Toxicol. Rev., 2007, no. 1, pp. 40–41.

    Google Scholar 

  7. Ostroymov, S.A. and Solomonva, E.A., Synthetic detergent “aist-universal:” effects on seed germination and seedling elongation of buckwheat Fagopyrum esculentum, Toxicol. Rev., 2007, no. 5, pp. 42–43.

    Google Scholar 

  8. Ostroumov, S.A. and Solomonva, E.A., Investigation of the interaction of sodium dodecyl sulfate with water macrophytes under experimental conditions, Toxicol. Rev., 2008, no. 4, pp. 21–26.

    Google Scholar 

  9. Solomonova, E.A. and Ostroumov, S.A., Effects of sodium dodecyl sulfate on the biomass of macrophytes Najas guadelupensis L., Toxicol. Rev., 2009, no. 2, pp. 32–35.

    Google Scholar 

  10. Strizhko, V.S. and Meretukov, M.A., Gold, in Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Sov. Entsikloped., 1990, vol. 2, pp. 334–338.

    Google Scholar 

  11. Boisselier, E. and Astruc, D., Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., 2009, vol. 38, no. 6, pp. 1759–1782.

    Article  PubMed  CAS  Google Scholar 

  12. Dobrovol’skii, G.V., On the 80th anniversary of the publication of the book by V.I. Vernadsky “Biosphere.” Development of some important sections of the teachings about biosphere, Ekol. Khim., 2007, vol. 16, no. 3, pp. 135–143.

    Google Scholar 

  13. Moiseenko, T.I., Vodnaya ekotoksikologiya: teoreticheskie i prikladnye aspekty (Aquatic Ecotoxicology: Theoretical and Applied Aspects), Moscow: Nauka, 2009.

    Google Scholar 

  14. Moiseenko, T.I. and Gashkina, N.A., Microelements in land surface waters and peculiarities of their migration, Dokl. Earth Sci., 2005, vol. 405, no. 9, pp. 1327–1332.

    Google Scholar 

  15. Ermakov, V.V., About the book “Aquatic Organisms in Water Self-Purification and Biogenic Migration of Elements,” Water: Chem. Ecol., 2009, no. 8, pp. 25–29.

    Google Scholar 

  16. Rand, G., Fundamentals of Aquatic Toxicology, Philadelphia: Taylor and Francis, 1995.

    Google Scholar 

  17. Ostroumov, S.A., Aquatic Organisms in Water Self-Purification and Biogenic Migration of Elements, Moscow: MAKS Press, 2008.

    Google Scholar 

  18. Chemical and biotic interactions. Bibliographic information. http://www.scribd.com/doc/62341906/

  19. Abakumov, V.A., New in the study of modern problems environmental science and ecology, including research on water ecosystems and organisms, Achiev. Life, 2012, no. 5, pp. 121–126.

    Google Scholar 

  20. Abakumov, V.A., A review of some achievements in environmental sciences, general ecology and aquatic ecology: functioning of ecosystems and environmental toxicology, Ecol. Studies Hazards Solutions, 2013, vol. 18, pp. 7–15.

    Google Scholar 

  21. Ermakov, V.V. and Gorshkova, O.M., Towards a new ecology and environmental science. (Review, bibliography of selected papers and books), Ecol. Studies Hazards Solutions, 2013, vol. 18, pp. 29–46.

    Google Scholar 

  22. Asharani, P.V., Lianwu, Y., Gong, Z., and Valiyaveettil, S., Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos, Nanotoxicology, 2011, vol. 5, no. 1, pp. 43–54.

    Article  PubMed  CAS  Google Scholar 

  23. Taylor, U.A., Barchanski, W., Garrels, S., Klein, W., Kues, S., and Barcikowski, D.R., Toxicity of gold nanoparticles on somatic and reproductive cells, Adv. Exp. Med. Biol., 2012, vol. 733, pp. 125–133.

    Article  PubMed  CAS  Google Scholar 

  24. Johnson, M.E., Ostroumov, S.A., Tyson, J.F., and Xing, B., Study of the interactions between Elodea canadensis and CuO nanoparticles, Russ. J. General Chem., 2011, vol. 81, no. 13, pp. 2688–2693.

    Article  CAS  Google Scholar 

  25. Ostroumov, S.A. and Kotevtsev, S.V., Toxicology of nanomaterials and environment, Ecologica, 2011, vol. 18, no. 61, pp. 3–10.

    Google Scholar 

  26. Ostroumov, S.A., Biological Effects of Surfactants, Boca Raton, FL: Taylor and Francis, 2006.

    Google Scholar 

  27. Ostroumov, S.A. and Trety’yakova, A.N., Effect of environmental pollution with a cationic surface active substance on algae and Fagopyrum esculentum sprouts, Soviet J. Ecol., 1990, vol. 21, no. 2, pp. 79–81.

    Google Scholar 

  28. Ostroumov, S.A. and Semykina, N.A., Reaction of Fagopyrum esculentum Moench to pollution of aqueous medium with polymeric surfactants, Russ. J. Ecol., 1993, vol. 24, no. 6, pp. 386–390.

    Google Scholar 

  29. Ostroumov, S.A. and Maksimov, V.N., Bioassay of surfactants based on the disruption of seedling attachment to the substrate and rhizoderm root hair formation, Biol. Bull. Acad. Sci. USSR, 1992, vol. 18, no. 4, pp. 383–386.

    Google Scholar 

  30. Solomonova, E.A. and Ostroumov, S.A., Tolerance of an aquatic macrophyte Potamogeton crispus L. to sodium dodecyl sulphate, Moscow Univ. Biol. Sci. Bull., 2007, vol. 62, no. 4, pp. 176–179.

    Article  Google Scholar 

  31. Ostroumov, S.A. and Khoroshilov, V.S., Biological activity of waters polluted with a liquid surfactant-containing detergent, Izv. Akad. Nauk SSSR, Ser. Biol., 1992, no. 3, pp. 452–458.

    Google Scholar 

  32. Poklonov, V.A., Kotelvtsev, S.A., Shestakova, T.V., Sheleykovsky, V.L., and Ostroumov, S.A., The study of phytoremediation potential of aquatic plants Lilaeopsis brasiliensis and Utricularia gibba, Water: Chem. Ecol., 2012, no. 5, pp. 66–69.

    Google Scholar 

  33. Ostroumov, S.A. and Xing, B., Effects of three types of metal oxide nanoparticles (TiO2, CuO, Al2O3) on the seedlings of the higher plant Lens culinaris, Ecologica, 2012, vol. 19, no. 65, pp. 10–14.

    Google Scholar 

  34. Ladislas, S., El-Mufleh, A., Herente, C., Chazarenc, F., Andres, Y., and Bechet, B., Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff, Water Air Soil Pollut., 2012, vol. 223, no. 2, pp. 877–888.

    Article  CAS  Google Scholar 

  35. Singh, D., Tiwari, A., and Gupta, R., Phytoremediation of lead from wastewater using aquatic plants, J. Agr. Technol., 2012, vol. 8, no. 1, pp. 1–11.

    Google Scholar 

  36. Wong, S.W., Leung, K.M., and Djurisic, A.B., A comprehensive review on the aquatic toxicity of engineered nanomaterials, Rev. Nanosci. Nanotechnol., 2012, vol. 2, no. 2, pp. 79–105.

    Article  Google Scholar 

  37. Mohmood, I., Lopes, C.B., Lopes, I., Ahmad, I., Duarte, A.C., and Pereira, E., Nanoscale materials and their use in water contaminants removal—a review, Environ. Sci. Pollut. Res., 2013, vol. 20, no. 3, pp. 1239–1260.

    Article  CAS  Google Scholar 

  38. Ostroumov, S.A., Problems of assessment of biological activity of xenobiotics, Moscow Univ. Biol. Sci. Bull., 1990, vol. 45, no. 2, pp. 26–32.

    Google Scholar 

  39. Ostroumov, S.A. and Wasternack, K., Response of photo-organotrophously growing green flagellates to water pollution by the detergent preparation “kristall,” Moscow Univ. Biol. Sci. Bull., 1991, vol. 46, no. 2, pp. 66–67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Ostroumov.

Additional information

Original Russian Text © S.A. Ostroumov, V.A. Poklonov, S.V. Kotelevtsev, S.N. Orlov, 2014, published in Vestnik Moskovskogo Universiteta. Biologiya, 2014, No. 3, pp. 19–23.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostroumov, S.A., Poklonov, V.A., Kotelevtsev, S.V. et al. Toxicity of gold nanoparticles for plants in experimental aquatic system. Moscow Univ. Biol.Sci. Bull. 69, 108–112 (2014). https://doi.org/10.3103/S0096392514030080

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0096392514030080

Keywords

Navigation