Skip to main content
Log in

Increasing the resistance of rape plants to the parasitic nematode Heterodera schachtii using RNAi technology

  • Published:
Cytology and Genetics Aims and scope Submit manuscript

Abstract

A vector for the constitutive expression of antisense to the conservative region of the 8H07 gene of the nematode H.schachtii dsRNA is constructed and a genetic transformation of rape plants is conducted by means of A. tumefaciens. Using molecular genetic methods, the presence of the vector expression of antinematode dsRNA in the genome of transgenic rape plants is shown, as well as the high level of their silencing activity is confirmed both in nematodes and in infected plants. In laboratory studies, a considerable increase in the tolerance of transgenic rape plants to the root parasitic nematode H. schachtii was shown for physiological signs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chitwood, D.J., Research on plant-parasitic nematode biology conducted by the United States department of agriculture. Agricultural research service, Pest Manag. Sci., 2003, vol. 59, pp. 748–753.

    Article  PubMed  CAS  Google Scholar 

  2. Karczmarek, A., Overmars, H., Helder, J., and Goverse, A., Feeding cell development by cyst and root-knot nematodes involves a similar early, local and transient activation of a specific auxin-inducible promoter element, Mol. Plant Path., 2004, vol. 5, no. 4, pp. 343–346.

    Article  CAS  Google Scholar 

  3. Fuller, V.L., Lilley, C.J., and Urwin, P.E., Nematode resistance, New Phytol., 2008, vol. 180, pp. 27–44.

    Article  PubMed  CAS  Google Scholar 

  4. Oka, Y., Mechanisms of nematode suppression by organic soil amendments, Appl. Soil. Ecol., 2010, vol. 44, pp. 101–115.

    Article  Google Scholar 

  5. Iutinskaya, G.A., Valagurova, E.V., Kozyritskaya, V.E., Belyavskaya, L.A., Petruk, T.V., Ponomarenko, S.P., and Eakin, D., Averkov—a new antiparasitic drug, in Bioregulyatsiya mikrobno-rastitel’nykh sistem (Bioregulation of Microbe-Plant Systems), Iutinskaya, G.A. and Ponomarenko, S.P., Eds., Kyiv: Nichlava, 2010, pp. 276–396.

    Google Scholar 

  6. Tsygankova, V.A., Ponomarenko, S.P., and Blume, Ya.B., Molecular-genetic mechanisms of growth regulation of plants with biologically active properties, Visn. Ukr. Tovar. Genet. Selekts., 2012, vol. 10, no. 1, pp. 86–94.

    Google Scholar 

  7. Yu, H. and Kumar, P.P., Post-transcriptional gene silencing in plants by RNA, Plant Cell Rep., 2003, vol. 22, pp. 167–174.

    Article  PubMed  CAS  Google Scholar 

  8. Padmanablhan, Ch., Zhang, X., and Jin, H., Host small RNAs are big contributors to plant innate immunity, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 465–472.

    Article  Google Scholar 

  9. Gheysen, G. and Vanholme, B., RNAi from plants to nematodes, Trends Biotechnol., 2006, vol. 25, no. 3, pp. 89–92.

    Article  Google Scholar 

  10. Fairbairn, D.J., Cavallaro, A.S., Bernard, M., et al., Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes, Planta, 2007, vol. 226, pp. 1525–1533.

    Article  PubMed  CAS  Google Scholar 

  11. Gao, B., Allen, R., Maier, T., et al., Identification of putative parasitism genes expressed in the esophageal gland cells of the soybean cyst nematode Heterodera glycines, Mol. Plant-Microbe Interact., 2001, vol. 14, no. 10, pp. 1247–1254.

    Article  PubMed  CAS  Google Scholar 

  12. Elling, A.A., Davis, E.L., Hussey, R.S., and Baum, T.J., Active uptake of cyst nematode parasitism proteins into the plant cell nucleus, Int. J. Parasit., 2007, vol. 37, pp. 1269–1279.

    Article  CAS  Google Scholar 

  13. Veronico, P., Gray, J.L., Jones, J.T., et al., Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia, Mol. Genet. Genom., 2001, vol. 266, pp. 28–34.

    Article  CAS  Google Scholar 

  14. Rosso, M.N., Dubrana, M.P., Cimbolini, N., et al., Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins, Mol. Plant-Microbe Interact., 2005, vol. 18, no. 7, pp. 615–620.

    Article  PubMed  CAS  Google Scholar 

  15. Sindhu, A.S., Maier, T.R., Mitchum, M.G., et al., Effective and specific in plant RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success, J. Exp. Bot., 2009, vol. 60, no. 1, pp. 315–324.

    Article  PubMed  CAS  Google Scholar 

  16. Ithal, N., Recknor, J., Nettleton, D., et al., Parallel genome-wide expression profiling of host and pathogen during soybean cyst nematode infection of soybean, Mol. Plant-Microbe Interact., 2007, vol. 20, no. 3, pp. 293–305.

    Article  PubMed  CAS  Google Scholar 

  17. Jammes, F., Lecomte, F., Almeida-Engler, J., et al., Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis, Plant J., 2005, vol. 44, pp. 447–458.

    Article  PubMed  CAS  Google Scholar 

  18. Tsygankova, V.A., Andrusevich, Ya.V., Ponomarenko, S.P., Galkin, A.P., and Blume, Ya.B., Isolation and amplification of cDNA from the conserved region of the nematode Heterodera schachtii 8H07 gene with a close similarity to its homolog in rape plants, Cytol. Genet., 2012, vol. 46, no. 6, pp. 335–341.

    Article  Google Scholar 

  19. Wesley, S.V., Helliwell, C.A., Smith, N.A., et al., Construct design for efficient, effective and high throughput gene silencing in plants, Plant J., 2001, vol. 27, no. 6, pp. 581–590.

    Article  PubMed  CAS  Google Scholar 

  20. Gleave, A.P., A versatile binary vector system with a T-DNA organisational structure conductive to efficient integration of cloned DNA into the plant genome, Plant. Mol. Biol., 1992, vol. 20, pp. 1203–1207.

    Article  PubMed  CAS  Google Scholar 

  21. Promega Protocols and Applications Guide, 2nd ed., USA: Promega Corporation, 1991.

  22. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  23. Steven, J., Clough, S.T., and Bent, A.F., Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana, Plant J., 1998, vol. 16, no. 6, pp. 735–743.

    Google Scholar 

  24. Tsygankova, V.A., Stefanovs’ka, T.R., Adrusevich, Ya.V., Ponomarenko, S.P., Galkin, A.P., and Blume, Ya.B., Induction of the biosynthesis of si/miRNAs with antipatogenic and antiparasitic properties in plant cells by growth regulators, Biotekhnologiya, 2012, vol. 5, no. 3, pp. 62–74.

    Google Scholar 

  25. Hamilton, A.J. and Baulcombe, D.C., A species of small antisense RNA in posttranscriptional gene silencing in plants, Science, 1999, vol. 286, pp. 950–952.

    Article  PubMed  CAS  Google Scholar 

  26. Wang, M.B., Wesley, S.V., Finnegan, E.J., et al., Replicating satellite RNA induces sequence-specific DNA methylation and truncated transcripts in plants, RNA, 2001, vol. 7, pp. 16–28.

    Article  PubMed  CAS  Google Scholar 

  27. Mette, M.F., Aufsatz, W., Winden, J., et al., Transcriptional silencing and promoter methylation triggered by double-stranded RNA, EMBO J., 2000, vol. 19, no. 19, pp. 5194–5201.

    Article  PubMed  CAS  Google Scholar 

  28. Lim, H.-S., Ko, T.-S., Lambert, K.N., et al., Soybean mosaic virus helper component-protease enhances somatic embryo production and stabilizes transgene expression in soybean, Plant Physiol. Biochem., 2005, vol. 43, pp. 1014–1021.

    Article  PubMed  CAS  Google Scholar 

  29. Wang, M.B., Upadhyaya, N.M., Brettell, R.I.S., and Waterhouse, P.M., Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens, J. Genet. Breed., 1997, vol. 51, pp. 3256–334.

    Google Scholar 

  30. Smith, N.A., Singh, S.P., Wang, M.-B., et al., Total silencing by intron-spliced hairpin RNAs, Nature, 2000, vol. 407, pp. 319–320.

    Article  PubMed  CAS  Google Scholar 

  31. Horiguchi, G., RNA silencing in plants: a shortcut to functional analysis, Differentiation, 2004, vol. 72, pp. 65–72.

    Article  PubMed  CAS  Google Scholar 

  32. Kerschen, A., Napoli, C.A., Jorgensen, R.A., and Muller, A.E., Effectiveness of RNA interference in transgenic plants, FEBS Lett., 2004, vol. 566, nos. 1/3, pp. 223–228.

    Article  PubMed  CAS  Google Scholar 

  33. Schmidhauser, T.J. and Helinski, D.R., Region of broad-host range plasmid rk2 involved in replication and stable maintenance in nine species of gram-negative bacteria, J. Bacteriol., 1985, vol. 164, pp. 446–455.

    PubMed  CAS  Google Scholar 

  34. Rogers, S.G., Klee, H.J., Horsch, R.B., and Fraley, R.T., Improved vectors for plant transformation: expression cassette vectors and new selectable markers, Methods Enzymol., 1987, vol. 153, pp. 253–277.

    Article  CAS  Google Scholar 

  35. Jen, G.C. and Chilton, M.D., The right border region of pTiT37 T-DNA is intrinsically more active than the left border region promoting T-DNA transformation, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, pp. 3895–3899.

    Article  PubMed  CAS  Google Scholar 

  36. An, G., Abert, P.P., Mitra, A., and Ha, S.B., Binary vectors, in Plant Molecular Biology Manual, Gelvin, S.B., Schilperoort, R.A., and Verma, D.P.S., Eds., Dordrecht: Kluwer Acad. Publ., 1988, pp. A3/1–A3/19.

    Google Scholar 

  37. Peralta, E.G., Hellmiss, R., and Ream, W., Overdrive, a T-DNA transmission enhancer on the a tumefaciens tumor-inducing plasmid, EMBO J., 1986, vol. 5, pp. 1137–1142.

    PubMed  CAS  Google Scholar 

  38. Drouaud, J., Marrocco, K., Ridel, C., et al., Brassica napus skp1-like gene promoter drives gus expression in Arabidopsis thaliana male and female gametophytes, Sex. Plant Rep., 2000, vol. 13, pp. 29–35.

    Article  CAS  Google Scholar 

  39. Zhao, D., Ni, W., Feng, B., et al., Members of the Arabidopsis-skp1-like gene family exhibit a variety of expression patterns and may play diverse roles in Arabidopsis, Plant Physiol., 2003, vol. 133, pp. 203–217.

    Article  PubMed  CAS  Google Scholar 

  40. Chai, L., Biswas, M.K., Ge, X., and Deng, X., Isolation, characterization, and expression analysis of an skp1-like gene from “shatian” pummelo (Citrus grandis Osbeck), Plant Mol. Biol. Rep., 2010, vol. 28, pp. 569–577.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Tsygankova.

Additional information

Original Ukrainian Text © V.A. Tsygankova, A.I. Yemets, H.O. Iutinska, L.O. Beljavska, A.P. Galkin, Ya.B. Blume, 2013, published in Tsitologiya i Genetika, 2013, Vol. 47, No. 4, pp. 35–45.

About this article

Cite this article

Tsygankova, V.A., Yemets, A.I., Iutinska, H.O. et al. Increasing the resistance of rape plants to the parasitic nematode Heterodera schachtii using RNAi technology. Cytol. Genet. 47, 222–230 (2013). https://doi.org/10.3103/S0095452713040105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0095452713040105

Keywords

Navigation