Skip to main content
Log in

Confinement of atoms with Robin’s condition: Spontaneous symmetry breaking

  • Theoretical and Mathematical Physics
  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

The properties of the ground state of the hydrogen atom in a spherical vacuum cavity with general boundary “not going out” conditions (i.e., when the probability current through the boundary vanishes) are studied. It is shown that in contrast to the confinement of an atom by a potential barrier, in this case depending on the parameters of the cavity, the atom could be in stable equilibrium at the center of the cavity or shift towards its periphery: spontaneous breaking of spherical symmetry occurs. The phase diagram of the shift and the dependence of the shift value and the binding energy of the ground state of the atom on the cavity parameters are presented. At the same time, the deformation properties of the electron wave function (WF) for an asymmetric distortion are so nontrivial that a non-zero shift occurs even when an electron is repulsed from the cavity boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. D. Sen, V. I. Pupyshev, and H. E. Montgomery, Adv. Quantum Chem. 57, 25 (2009). doi 10.1016/S0065-3276(09)00606-6

    Article  ADS  Google Scholar 

  2. E. Ley-Koo, Adv. Quantum Chem. 57, 79 (2009). doi 10.1016/S0065-3276(09)00607-8

  3. Electronic Structure of Quantum Confined Atoms and Molecules, Ed. by K. D. Sen (Springer, 2014). doi 10.1007/978-3-319-09982-8

  4. Y. X. Ren, T. Y. Ng, and K. M. Liew, Carbon 44, 397 (2006). doi 10.1016/j.carbon.2005.09.009

    Article  Google Scholar 

  5. V. K. Dolmatov, A. S. Baltenkov, J.-P. Connerade, and S. T. Manson, Radiat. Phys. Chem. 70, 417 (2004). doi 10.1016/j.radphyschem.2003.12.024

    Article  ADS  Google Scholar 

  6. P. V. Yurenev, A. V. Scherbinin, and V. I. Pupyshev, Int. J. Quantum Chem. 106, 2201 (2006). doi 10.1002/qua.20867

    Article  ADS  Google Scholar 

  7. R. Caputo and A. Alavi, Mol. Phys. 101, 1781 (2003). doi 10.1080/0026897031000094489

    Article  ADS  Google Scholar 

  8. Y. Fukai, The Metal-Hydrogen System. Basic Bulk Properties, 2nd ed. (Springer, Berlin, 2005).

    Google Scholar 

  9. R. Dutt, A. Mukherjee, and Y. P. Varshni, Phys. Lett. A 280, 318 (2001). doi 10.1016/S0375-9601(01)00067-6

    Article  ADS  Google Scholar 

  10. A. Michels, J. deBoer, and A. Bijl, Physica 4, 981 (1937). doi 10.1016/S0031-8914(37)80196-2

    Article  ADS  Google Scholar 

  11. E. Wigner and F. Seitz, Phys. Rev. 43, 804 (1933)

    Article  ADS  Google Scholar 

  12. E. Wigner and F. Seitz, Phys. Rev. 46, 509 (1934).

    Article  ADS  Google Scholar 

  13. W. Jaskolski, Phys. Rep. 271, 1 (1996). doi 10.1016/0370-1573(95)00070-4

    Article  ADS  Google Scholar 

  14. C. Diaz-Garcia and S. A. Cruz, Int. J. Quantum Chem. 108, 1572 (2008). doi 10.1002/qua.21670

    Article  ADS  Google Scholar 

  15. C. Zicovich-Wilson, W. Jaskolski, and J. Planelles, Int. J. Quantum Chem. 54, 61 (1995). doi 10.1002/qua.560540109

    Article  Google Scholar 

  16. E. Ley-Koo and S. A. Cruz, J. Chem. Phys. 74, 4603 (1981). doi 10.1063/1.441649

    Article  ADS  Google Scholar 

  17. K. A. Sveshnikov and A. V. Tolokonnikov, Moscow Univ. Phys. Bull. 70, 181 (2015). doi 10.3103/S0027134915030091

    Article  ADS  Google Scholar 

  18. A. V. Scherbinin and V. I. Pupyshev, Russ. J. Phys. Chem. 74, 292 (2000).

    Google Scholar 

  19. M. H. Al-Hashimi and U.-J. Wiese, Ann. Phys. 327, 2742 (2012). doi 10.1016/j.aop.2012.06.006

    Article  ADS  Google Scholar 

  20. J. P. Connerade, A. G. Lyalin, R. Semaoune, et al., J. Phys. B 34, 2505 (2001). doi 10.1088/0953-4075/34/12/314

    Article  ADS  Google Scholar 

  21. K. A. Sveshnikov and A. V. Tolokonnikov, Moscow Univ. Phys. Bull. 68, 13 (2013). doi 10.3103/S0027134913010165

    Article  ADS  Google Scholar 

  22. K. Sveshnikov and A. Roenko, Phys. B 427, 118 (2013). doi 10.1016/j.physb.2013.06.031

    Article  ADS  Google Scholar 

  23. Theory of Confined Quantum Systems, Ed. by J. R. Sabin and E. J. Brandas (Elsevier, Amsterdam, 2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Sveshnikov.

Additional information

Original Russian Text © K.A. Sveshnikov, P.K. Silaev, A.V. Tolokonnikov, 2017, published in Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 2017, No. 1, pp. 29–35.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sveshnikov, K.A., Silaev, P.K. & Tolokonnikov, A.V. Confinement of atoms with Robin’s condition: Spontaneous symmetry breaking. Moscow Univ. Phys. 72, 29–35 (2017). https://doi.org/10.3103/S0027134917010155

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134917010155

Keywords

Navigation