Skip to main content
Log in

Special framed Morse functions on surfaces

  • Published:
Moscow University Mathematics Bulletin Aims and scope

Abstract

Let M be a smooth closed orientable surface. Let F be the space of Morse functions on M and \(\mathbb{F}^1\) be the space of framed Morse functions both endowed with the C -topology. The space \(\mathbb{F}^0\) of special framed Morse functions is defined. We prove that the inclusion mapping

is a homotopy equivalence. In the case when at least x(M) + 1 critical points of each function of F are marked, the homotopy equivalences

and

are proved, where

is the complex of framed Morse functions,

is the universal moduli space of framed Morse functions,

is the group of self-diffeomorphisms of M homotopic to the identity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Kudryavtseva and D. A. Permyakov, “Framed Morse Functions on Surfaces,” Matem. Sborn. 201(4), 33 (2010) [Sbornik Math. 201 (4), 501 (2010)].

    MathSciNet  Google Scholar 

  2. E. A. Kudryavtseva, “Uniform Morse Lemma and Isotopy Criterion for Morse Functions on Surfaces,” Vestn. Mosk. Univ., Matem. Mekhan., No. 4, 13 (2009) [Moscow Univ. Math. Bull. 64 (4), 12 (2009)].

  3. E. A. Kudryavtseva, “On the Homotopy Type of the Spaces of Morse Functions on Surfaces,” Matem. Sborn. (in press).

  4. E. A. Kudryavtseva, “Topology of Spaces of Morse Functions on Surfaces,” Matem. Zametki 92(4), 41 (2012) [Math. Notes (2012)].

    Google Scholar 

  5. E. A. Kudryavtseva, “Connected Components of Spaces of Morse Functions with Fixed Critical Points,” Vestn. Mosk. Univ., Matem. Mekhan., No. 1, 3 (2012) [Moscow Univ. Math. Bull., No. 1, 3 (2012)].

  6. A. T. Fomenko, “Morse Theory of Integrable Hamiltonian Systems,” Doklady Akad. Nauk SSSR 287(5), 1071 (1986) [Soviet Math. Dokl. 33 (2), 502 (1986)].

    MathSciNet  Google Scholar 

  7. S. V. Matveev and A. T. Fomenko, “Morse-Type Theory for Integrable Hamiltonian Systems with Tame Integrals,” Matem. Zametki 43(5), 663 (1988) [Math. Notes 43 (5) 382 (1988)].

    MathSciNet  MATH  Google Scholar 

  8. S. V. Matveev, A. T. Fomenko, and V. V. Sharko, “Round Morse Functions and Isoenergy Surfaces of Integrable Hamiltonian Systems,” Matem. Sborn. 135(177) (3), 325 (1988) [Math. of the USSR-Sbornik 63 (2), 319 (1989)].

    Google Scholar 

  9. E. A. Kudryavtseva, “Stable Invariants of Conjugacy of Hamiltonian Systems on Two-Dimensional Surfaces,” Doklady Russ. Akad. Nauk 361(3), 314 (1998).

    MathSciNet  Google Scholar 

  10. E. A. Kudryavtseva, “Realization of Smooth Functions on Surfaces as Height Functions,” Matem. Sborn. 190(3), 29 (1999) [Sbornik Math. 190 (3–4), 349 (1999)].

    MathSciNet  Google Scholar 

  11. G. G. Magaril-Ilyaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications (Editorial URSS, Moscow, 2000; Amer. Math. Soc., Providence, RI, 2003).

    Google Scholar 

  12. S. Smale, “Diffeomorphisms of the 2-Sphere,” Proc. Amer. Math. Soc., 10, 621 (1959).

    MathSciNet  MATH  Google Scholar 

  13. C. J. Earle and J. Eells Jr., “The Diffeomorphism Group of a Compact Riemann Surface” Bull. Amer. Math. Soc. 73(4), 557 (1967).

    Article  MathSciNet  Google Scholar 

  14. C. J. Earle and J. Eells Jr., “A Fiber Bundle Description of Teichmüller Theory,” J. Diff. Geometry 3, 19 (1969).

    MathSciNet  MATH  Google Scholar 

  15. A. T. Fomenko and D. B. Fuchs, Course of Homotopic Topology (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  16. E. H. Spanier, Algebraic Topology (McGraw-Hill, N.Y., 1966; Mir, Moscow, 1971).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.A. Kudryavtseva, 2012, published in Vestnik Moskovskogo Universiteta, Matematika. Mekhanika, 2012, Vol. 67, No. 4, pp. 14–20.

About this article

Cite this article

Kudryavtseva, E.A. Special framed Morse functions on surfaces. Moscow Univ. Math. Bull. 67, 151–157 (2012). https://doi.org/10.3103/S0027132212040031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027132212040031

Keywords

Navigation