Skip to main content
Log in

Estimating the plastic strain with the use of acoustic anisotropy

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Experimental verification is used to show that reference specimens and structure unloading do not permit obtaining an adequate estimate of plastic strain by measuring the acoustic anisotropy. Analytic estimates of the speed of propagation of a plane acoustic wave of various polarizations in an elastoplastic material in the direction orthogonal to the action of preliminary uniaxial stress are obtained. An analysis of the obtained relations reveala an advantage of using absolute values of the velocity of longitudinal and transverse waves for the plastic strain identification. In contrast to acoustic anisotropy, the velocities vary monotonically in a wider range of plastic strains. At the same time, the elastic strain does not affect the longitude wave velocity, which allows one to use the measurement results to estimate the character of strains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Hughes and J. L. Kelly, “Second-Order Elastic Deformation of Solids,” Phys. Rev. 92 (5), 1145–1149 (1953).

    Article  ADS  MATH  Google Scholar 

  2. M. Hirao and Y. H. Pao, “Dependence of Acoustoelastic Birefringence on Plastic Strains in a Beam,” J. Acoust. Soc. Am. 77 (5), 1659–1664 (1985).

    Article  ADS  Google Scholar 

  3. Y. H. Pao, “Theory of Acoustoelasticity and Acoustoplasticity,” in Solid Mechanics Research for Quantitative Nondestructive Evaluation (Springer, Netherlands, 1986), pp. 257–273.

    Google Scholar 

  4. Y. H. Pao, T. T. Wu, and U. Gamer, “Acoustoelastic Birefringences in Plastically Deformed Solids. Part I: Theory,” J. Appl.Mech. 58 (1), 11–17 (1991).

    Article  ADS  MATH  Google Scholar 

  5. M. Kobayashi, “Theoretical Study of Acoustoelastic Effects Caused by Plastic Anisotropy Growth,” Int. J. Plasticity 3 (1), 1–20 (1987).

    Article  MATH  Google Scholar 

  6. M. Kobayashi, “Ultrasonic Nondestructive Evaluation of Microstructural Changes of Solid Materials under Plastic Deformation. Part I: Theory,” Int. J. Plasticity 14 (6), 511–522 (1998).

    Article  MATH  Google Scholar 

  7. M. Kobayashi, “Ultrasonic Nondestructive Evaluation of Microstructural Changes of Solid Materials under Plastic Deformation. Part II: Experiment and Simulation,” Int. J. Plasticity 14 (6), 523–535 (1998).

    Article  MATH  Google Scholar 

  8. N. Y. Nikitian, A. V. Kamyshev, and S. V. Kazachek, “The Application of the Acoustoelasticity Method for the Determination of Stresses in Anisotropic Pipe Steels,” Russ. J. Nondestruct. Testing 51 (3), 171–178 (2015).

    Article  Google Scholar 

  9. J. Mandel and L. Brun, Mechanical Waves in Solids (Springer-Verlag, Wien, 1975).

    Book  MATH  Google Scholar 

  10. A. S. Semenov, Computational Methods in Theory of Plasticity (Izdat. SPbGPU, St.Petersburg, 2008) [in Russian].

    Google Scholar 

  11. V. A. Babeshko, E. V. Glushkov, and N. V. Glushkova, “Methods of Constructing Green’s Matrix of a Stratified Elastic Half-Space,” Zh. Vychisl.Mat. Mat. Fiz. 27 (1), 93–101 (1987) [USSR Comput. Math. Math. Phys. (Engl. Transl.) 27 (1), 60–65 (1987)].

    MathSciNet  MATH  Google Scholar 

  12. V. A. Babeshko, O. V. Evdokimova, and O. M. Babeshko, “The Integral Factorization Method in Mixed Problems for Anisotropic Media,” Dokl. Ross. Akad. Nauk 426 (4), 471–475 (2009) [Dokl. Phys. (Engl. Transl.) 54 (6), 285–289 (2009)].

    MathSciNet  MATH  Google Scholar 

  13. L. B. Zuev, B. S. Semukhin, and K. I. Bushmeleva, “Variation of the Ultrasonic Velocity in Al under Plastic Deformation,” Zh. Tekhn. Fiz. 70 (1), 52–56 (2000) [Tech. Phys. (Engl. Transl.) 45 (1), 50–54 (2000)].

    Google Scholar 

  14. B. S. Semukhin, L. B. Zuev, and K. I. Bushmeleva, “The Velocity of Ultrasound in Low-Carbon Steel Deformed at the Low Yield Limit,” Zh. Prikl. Mekh. Tekhn. Fiz. 41 (3), 197–201 (2000) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 41 (3), 556–559 (2000)].

    Google Scholar 

  15. L. B. Zuev, B. S. Semukhov, and K. I. Bushmeleva, “Dependence of the Ultrasound Velocity on the Acting Stress during Plastic Flow of Polycrystals,” Zh. Tekhn. Fiz. 69 (12), 100–101 (1999) [Tech. Phys. (Engl. Transl.) 44 (12), 1489–1490 (1999)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Belyaev.

Additional information

Original Russian Text © A.K. Belyaev, A.M. Lobachev, V.S. Modestov, A.V. Pivkov, V.A. Polyanskii, A.S. Semenov, D.A. Tret’yakov, L.V. Shtukin, 2016, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2016, No. 5, pp. 124–131.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, A.K., Lobachev, A.M., Modestov, V.S. et al. Estimating the plastic strain with the use of acoustic anisotropy. Mech. Solids 51, 606–611 (2016). https://doi.org/10.3103/S0025654416050149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654416050149

Keywords

Navigation