Skip to main content
Log in

On the dynamic stability of an elastically fixed high-drag airfoil under vortical parametric excitations

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Conditions of dynamic instability at parametric resonance in an oscillatory system with three degrees of freedom, which models the motion of an elastically fixed high-drag airfoil under unsteady aerohydrodynamic loads due to the vortex trail separation, are obtained in the linear approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. S. Popel and V. L. Tumanov, “Renewable Energy Sources: State of the Art and Development Perspectives,” Mezhdunarod. Nauch. Zh. “Alternat. Energet. Ekolog.,” No. 2, 135–148 (2007).

    Google Scholar 

  2. M. M. Bernitsas, K. Raghavan, Y. Ben-Simon, and E. M. Garcia, “VIVACE (Vortex Induced Vibration Aquatic Clean Energy): A New Concept in Generation of Clean and Renewable Energy from Fluid Flow,” J. OffshoreMech. Arctic Engng 130, No. 4 (2008).

  3. P. R. Andronov, M. Z. Dosaev, G. Ya. Dynnikova, et al., “Modeling of Windmill of Oscillatory Type,” Probl. Mashinostr. Nadezhn. Mashin, No. 4, 86–91 (2009).

    Google Scholar 

  4. B. H. Huynh, T. Tjahjowidodo, Z. W. Zhong, et al., “Nonlinearly Enhanced Vortex Induced Vibrations for Energy Harvesting,” in IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Busan (Korea) (2015), pp. 91–96.

    Chapter  Google Scholar 

  5. A. Zhukauskas, R.Ulinskas, and V. Katinas, FluidDynamics and Flow-Induced Vibration of Tube Banks (Mosklas, Vilnus, 1984; Hemisphere Publishing Corp., New York,Washington, London, 1988).

    Google Scholar 

  6. S. I. Devnin, Aerohydromechanics of High-Drag Structures (Sudostroenie, Leningrad, 1983) [in Russian].

    Google Scholar 

  7. E. Simiu and R. H. Scanlan, Wind Effects on Structures (JohnWiley, New York, 1978; Stroiizdat,Moscow, 1984).

    Google Scholar 

  8. Y. C. Fung, An Introduction to the Theory of Aeroelasticity (Wiley, New York, 1955; Fizmatgiz, Moscow, 1959).

    Google Scholar 

  9. H. Glauert, “The Motion of an Aerofoil about a Fixed Axis,” in Reports and Memoranda, No. 595 (Great Britain Advisory Committee for Aeronautics (GBACA), 1919).

    Google Scholar 

  10. J. P. Den-Hartog, “Transmission Line’s Vibrations due to Sleet,” Trans. AIEE 51, 1974–1076 (1932).

    Google Scholar 

  11. V. I. Van’ko and E. V. Solovieva, “Conditions of Aerodynamic Instability of Airfoil EquilibriumPositions,” Zh. Prikl. Mekh. Tekhn. Fiz. 37 (5), 29–34 (1996) [J. Appl. Mech. Tech. Phys. (Engl. Transl.) 37 (5), 638–642 (1996)].

    Google Scholar 

  12. I. K. Marchevskii, “On Stability Conditions of Profile Equilibrium in a Flow,” VestnikMGTU im. Baumana. Ser. Est. Nauki, No. 4, 29–36 (2007).

    Google Scholar 

  13. B. V. Kurzin, “Mathematical Model of Aeroelastic Vibrations of Cascades of Axial Turbomachine Blades Caused by CircumferentialNonuniformity of the Flow,” Zh. Prikl.Mekh. Tekhn. Fiz. 50 (6), 134–145 (2009) [J. Appl.Mech. Tech. Phys. (Engl. Transl.) 50 (6), 1026–1035 (2009)].

    MATH  Google Scholar 

  14. A. I. Maslova and A. V. Pirozhenko, “Parametric Resonance in Oscillations of a Spacecraft under the Action of a Variable Aerodynamic Torque,” Mekh. Tverd. Tela, No. 40, 140–151 (2010).

    MathSciNet  Google Scholar 

  15. H. Lumbantobing, “On the Parametric Excitation of Some Nonlinear Oscillators,” Reports of the Department of AppliedMathematical Analysis, Report No. 01–11 (Delft Univ. of Technology, Delft 2003).

    Google Scholar 

  16. J.-H. Chang, R. O. Stearman, D. Choi, and E. J. Powers, “Identification of Aeroelastic Phenomenon Employing BispectralAnalysis Techniques,” in 3rd Intern.Modal Analysis Conference, Orlando, Florida, USA (1985), pp. 956–964.

    Google Scholar 

  17. S. V. Chelomei, “On Dynamic Stability of Elastic Systems,” Dokl. Akad. Nauk SSSR 252 (2), 307–310 (1980).

    MathSciNet  Google Scholar 

  18. S. V. Chelomei and G. A. Shcheglov, “On the Dynamic Stability of a Rectilinear Pipeline Acted upon by a Variable Axial Force due to the Flow of a Pulsating Fluid,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 175–184 (1998) [Mech. Solids (Engl. Transl.) 33 (6), 140–147 (1998)].

    Google Scholar 

  19. V. A. Yakubovich and V. M. Starzhinskii, Linear Differential Equations with Periodic Coefficients and Their Applications (Nauka, Moscow, 1972) [in Russian].

    Google Scholar 

  20. L. D. Akulenko and S. V. Nesterov, “Parametric Vibrations of a Mechanical System and Their Stability for an ArbitraryModulation Coefficient,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 2, 3–13 (2013) [Mech. Solids (Engl. Transl.) 48 (2), 119–127 (2013)].

    Google Scholar 

  21. V. V. Larichkin, Aerodynamics of Cylindrical Bodies and Some Engineering Problems of Ecology (Izdat. NGTU, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  22. N. N. Bogolyubov and Yu. A. Mitropolskii, Asymptotic Methods in Theory of Nonlinear Oscillations (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. K. Marchevskii.

Additional information

Original Russian Text © I.K. Marchevskii, G.A. Shcheglov, 2016, published in Izvestiya Akademii Nauk, Mekhanika Tverdogo Tela, 2016, No. 3, pp. 131–139.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchevskii, I.K., Shcheglov, G.A. On the dynamic stability of an elastically fixed high-drag airfoil under vortical parametric excitations. Mech. Solids 51, 349–356 (2016). https://doi.org/10.3103/S0025654416030122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654416030122

Keywords

Navigation