Skip to main content
Log in

Influence of the form of material structure elements on the fracture scenario in a complex stress state

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The bearing capacity of structured materials and the character of their fracture depend on the response of structure elements to the loading conditions. An example of analysis of elastobrittle fracture of materials containing pores or microcracks is used to illustrate the differences in mechanisms of their fracture in the situations of external compression.

We consider the mechanism of influence of structures of these types on the material fracture initiation and the dilatancy due to variations in the stress state and on the character of development of main fractures formed by unifying the cracks growing near active elements of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. S. Pisarenko and A. A. Lebedev, Deformation and Strength of Materials in Complex Stress State (Naukova Dumka, Kiev, 1976) [in Russian].

    Google Scholar 

  2. V. P. Degtyarev, Deformations and Fracture in Highly Stressed Structures (Mashinostroenie, Moscow, 1987) [in Russian].

    Google Scholar 

  3. E. Z. Wang and N. G. Shrivt, “Brittle Fracture in Compression: Mechanics, Models, and Criteria,” Engng Fract. Mech. 52(6), 1107–1126 (1995).

    Article  Google Scholar 

  4. M. Hori and S. Nemat-Nasser, “On Two Micromechanics Theories for Determining Micro-Macro Relations in Heterogeneous Solids,” Mech. Mater. 31, 667–682 (1999).

    Article  Google Scholar 

  5. C. A. Tang, Z. Z. Liang, Y. B. Zhang, et al., “Fracture. Spacing in Layered Materials: A New Explanation Based on Two-Dimensional Failure Process Modeling,” Am. J. Sci. 308, 49–74 (2008).

    Article  Google Scholar 

  6. A. N. Vlasov, “Determination of Strength Characteristics of Structure-Inhomogeneous Media,” Mekh. Komp. Mater. Konstr. 13(2), 209–218 (2007) [J. Comp. Mech. Design (Engl. Transl.)].

    MathSciNet  Google Scholar 

  7. W. F. Brace and E. G. Bombolakis, “A Note on Brittle Crack Growth in Compression,” J. Geophys. Res. 68(12), 3709–3713 (1963).

    Article  ADS  Google Scholar 

  8. R. V. Goldstein, V. M. Ladygin, and N. M. Osipenko, “A Model of the Fracture of a Slightly Porous Material under Compression or Tension,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskopaemykh, No. 1, 3–13 (1974) [J. Mining Sci. (Engl. Transl.) 10 (1), 1–9 (1974)].

    Google Scholar 

  9. E. Z. Lajtai and V. N. Lajtai, “The Collapse of Cavities,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 12, 81–86 (1975).

    Article  Google Scholar 

  10. E. Hoek and Z. T. Bieniawski, “Brittle Rock Fracture Propagation in Rock under Compression,” Int. J. Fract. Mech. 1(3), 137–155 (1965).

    Google Scholar 

  11. T. Plaisted, A. V. Amirkhizi, and S. Nemat-Nasser, “Compression-Induced Axial Crack Propagation in DCDC Polymer Samples: Experiments and Modeling,” Int. J. Fract. 141(3–4), 447–457 (2006).

    Article  Google Scholar 

  12. M. F. Ashby and S. D. Hallam, “The Failure of Brittle Solids Containing Small Cracks under Compression Stress States,” Acta Metall. 34(3), 497–510 (1986).

    Article  Google Scholar 

  13. H. Horii and S. Nemat-Nasser, “Brittle Failure in Compression: Splitting, Faulting, and Brittle-Ductile Transition,” Phil. Trans. Roy. Soc. 319(1549), 337–374 (1986).

    Article  ADS  MATH  Google Scholar 

  14. L. N. Germanovich, A. V. Dyskin, and N. M. Tsyrulnikov, “AModel of the Deformation and Fracture of Brittle Materials under Uniaxial Compression,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 1, 127–143 (1993) [Mech. Solids (Engl. Transl.) 28 (1), 116–128 (1993)].

    Google Scholar 

  15. R. V. Goldstein and N. M. Osipenko, “Fracture and Formation of a Structure,” Dokl. Ross. Akad. Nauk 240(4), 829–832 (1978) [Sov. Phys. Dokl. (Engl. Transl.)].

    Google Scholar 

  16. N. A. Lavrov and L. I. Slepyan, “Brittle Fracture of Elastic Bodies under Compression,” Dokl. Ross. Akad. Nauk 316(5), 1098–1102 (1991) [Sov. Phys. Dokl. (Engl. Transl.) 36, 344–346 (1991)].

    Google Scholar 

  17. Z. Bažant and J. Planas, Fracture and Size Effect in Concrete and Other Quasibrittle Materials (CRC Press, Boca Raton and London, 1998).

    Google Scholar 

  18. B. Haimson and J. W. Rudnicki, “The Effect of the Intermediate Principal Stress on Fault Formation and Fault Angle in Siltstone,” J. Struct. Geol. 32(11), 1701–1711 (2010).

    Article  ADS  Google Scholar 

  19. C. G. Sammis and M. F. Ashby, “The Failure of Brittle Porous Solids under Compressive Stress States,” Acta Metall. 34, 511–526 (1986).

    Article  Google Scholar 

  20. R. Böcker, Die Mechanik der bleibenden Formämderung in kristallinish aufgebauten Körpern. Forschungsarbeiten Ing. Wes. (Berlin, 1915).

    Google Scholar 

  21. V. I. Blokh, Theory of Elasticity (Kharkov, 1964) [in Russian].

    Google Scholar 

  22. S. P. Demidov, Theory of Elasticity (Vysshaya Shkola, Moscow, 1979) [in Russian].

    Google Scholar 

  23. I. A. Birger and Ya. G. Panovko (Editors), Strength. Stability. Vibrations, Reference Book, Vol. 1 (Mashinostroenie, Moscow, 1988) [in Russian].

    Google Scholar 

  24. B. C. Heimson, “Borehole Breakouts in Berea Sandstone Reveal a New Fracture,” Pure Appl.Geophys. 160, 813–831 (2003).

    Article  ADS  Google Scholar 

  25. R. V. Goldstein and N. M. Osipenko, “Fracture Structures in Intensive Compression,” in Problems of Mechanics of Deformable Solids and Rocks (Fizmatlit, Moscow, 2006), pp. 152–166 [in Russian].

    Google Scholar 

  26. L. N. Germanovich and A. V. Dyskin, “Fracture Mechanisms and Instability of Opening in Compression,” Int. J. Rock Mech. Min. Sci. 37, 263–284 (2000).

    Article  Google Scholar 

  27. Y. Murakami (Editor), Stress Intensity Factors Handbook, Vol. 1 (Pergamon Press, Oxford, 1987; Mir, Moscow, 1990).

    Google Scholar 

  28. G. P. Cherepanov, Mechanics of Rock Failure in Drilling (Nedra, Moscow, 1974) [in Russian].

    Google Scholar 

  29. R. V. Goldstein and N. M. Osipenko, “Structures in Fracture Processes,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 49–71 (1999) [Mech. Solids (Engl. Transl.) 34 (5), 39–57 (1999)].

    Google Scholar 

  30. C. Fairhurst and N. G. W. Cook, “The Phenomenon of Rock Splitting Parallel to the Direction of Maximum Compression in the Neighborhood of a Surface,” in Proc. First. Congr. Int. Soc. Rock Mech. (Lisbon, 1966), pp. 687–692.

    Google Scholar 

  31. G. P. Cherepanov, Mechanics of Brittle Failure (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Goldstein.

Additional information

Original Russian Text © R.V. Goldstein, N.M. Osipenko, 2015, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2015, No. 2, pp. 44–59.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldstein, R.V., Osipenko, N.M. Influence of the form of material structure elements on the fracture scenario in a complex stress state. Mech. Solids 50, 147–159 (2015). https://doi.org/10.3103/S0025654415020041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654415020041

Keywords

Navigation