Skip to main content
Log in

High-temperature phase transitions. Properties and equilibrium of phases under shock-wave loading

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

Introducing the temperature as a parameter in the shock-wave experiment can significantly enlarge the scope of phenomena that can be studied. The influence of temperature on the elastoplastic processes accompanying the high-rate deformation and the phase transitions in shock waves is nontrivial and far from complete understanding. The currently existing experimental technique with laser Doppler diagnostics of specimens heated to 1400 K has already been successfully used to study the influence of temperature on the shock-wave behavior and the “dynamic” phase diagrams of both pure metal elements (U, Ti, Fe, Co, Ag, Cu) and ionic and covalent compounds (KCL, KBr, Al2O3). These studies showed the typical behavior, which was first discovered by Kanel and his colleagues for pure fcc (Al, As, Co, Cu) and some other (Sn, U) metals and ionic crystals under shock-wave loading, is that their shear strength increases with temperature. At the same time, similar “thermal strengthening” was not discovered in pure metals with bcc lattice. Sharp anomalies of (both shear and spallation) strength were observed near various phase transitions (polymorphic, magnetic, and related to melting). These studies showed that the shear strength of a pure metal increases by 50–100% near the phase boundary (i.e., the line of phase transitions of the first kind). At the same time, the presence of a trace amount (∼0.5%) of any impurity can lead to a fivefold decrease in the strength, as in the case of technically pure nickel near its Curie point. The same experimental technique used to study the shear stress relaxation in shock-wave loaded specimens can be extremely useful when studying mechanisms responsible for these anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. Rohde, “Dynamic Yield Behavior of Shock-Loaded Iron from 76 to 573 K,” Acta Metallurgica 17(3), 353–363 (1969).

    Article  MathSciNet  Google Scholar 

  2. R. W. Rohde, “Temperature Dependence of the Shock-Induced Reversal of Martensite to Austenite in an Iron-Nickel-Carbon Alloy,” Acta Metallurgica 18(8), 903–913 (1970).

    Article  Google Scholar 

  3. L. M. Barker and R. E. Hollenbach, “Laser Interferometer for Measuring High Velocities of Any Reflecting Surface,” J. Appl. Phys. 43, 4669–4675 (1972).

    Article  ADS  Google Scholar 

  4. J. R. Asay, “Shock-Induced Melting in Bismuth,” J. Appl. Phys. 45, 4441–4452 (1974).

    Article  ADS  Google Scholar 

  5. P. L. Hereil, “Elastic-Plastic Behavior of Iron at High Rates and Elevated Temperature,” J. de Phys. Colloque 49(9), C3-77–C3-83 (1988).

    ADS  Google Scholar 

  6. H. Nahme and M. Hiltl, “Dynamic Properties and Microstructural Behavior of Shock-Loaded Armco Iron at High Temperature,” in Metallurgical and Materials Application of Shock-Wave and High-Strain Rate Phenomena, Ed. by L. E. Murr, et al. (Elsivier, Amsterdam, 1995), pp. 731–738.

    Google Scholar 

  7. T. S. Duffy and T. J. Ahrens, “Free Surface Velocity Profiles in Molybdenum Shock Compressed at 1400°C,” in High-Pressure Science and Technology. 1993, Ed. by S. C. Schmidt, et al. (AIP, New York, 1994), pp. 1079–1082.

    Google Scholar 

  8. G. I. Kanel, S. V. Razorenov, A. Bogatch, et al., “Spall Fracture Properties of Aluminum and Magnesium at High Temperatures,” J. Appl. Phys. 79(11), 8310–8317 (1996).

    Article  ADS  Google Scholar 

  9. A. V. Utkin, G. I. Kanel, S. V. Razorenov, et al., “Elastic Moduli and Dynamic Yield Strength of Metals near the Melting Temperature,” in Shock Compression of Condensed Matter 1997, Ed. by S. C. Schmidt, et al., No. 429 (AIP, New York, 1998), pp. 443–446.

    Google Scholar 

  10. A. Bogatch, G. I. Kanel, S. V. Razorenov, et al. “Resistance of Zinc Crystals to Shock Deformation and Fracture at Elevated Temperature,” Phys. Solid State 40(10), 1676–1680 (1998).

    Article  ADS  Google Scholar 

  11. L. Krüger, L. W. Meyer, S. V. Razorenov, and G. I. Kanel, “Investigation of Dynamic Flow and Strength Properties of Ti-6-22-22S at Normal and Elevated Temperatures,” Int. J. Impact Engng 28, 877–890 (2003).

    Article  Google Scholar 

  12. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, “Shock-Wave Compression and Tension of Solids at Elevated Temperatures: Superheated Crystal States, Pre-Melting, and Anomalous Growth of the Yield Strength,” J. Phys.: Condens. Matter 16(14), 1007–1016 (2004).

    ADS  Google Scholar 

  13. E. Zaretsky, B. Herrmann, and D. Shvarts, “Dynamic Response of High Temperature Uranium Phases,” in Shock Compression of Condensed Matter 2005, Ed. by M. D. Furnish, et al., No. 845 (AIP, New York, 2006), pp. 292–295.

    Google Scholar 

  14. E.B. Zaretsky, G. I. Kanel, S. V. Razorenov, and K. Baumung, “Impact Strength Properties of Nickel-Based Refractory Superalloys at Normal and Elevated Temperatures,” Int. J. Impact Engng 31(1), 41–54 (2005).

    Article  Google Scholar 

  15. E. V. Zaretsky, “Dynamic Response of Titanium from Ambient Temperature to 1000°C,” J. Appl. Phys. 104(24), 123505 (2008).

    Article  ADS  Google Scholar 

  16. H. Ogi, S. Kai, H. Ledbetter, et al., “Titanium’s High-Temperature Elastic Constants through the HCP-BCC Phase Transformation,” Acta Mater. 52, 2075–2080 (2004).

    Article  Google Scholar 

  17. E. B. Zaretsky, “Shock Response of Iron between 143 and 1275 K,” J. Appl. Phys. 106, 023510 (2009).

    Article  ADS  Google Scholar 

  18. E. B. Zaretsky, “Impact Response of Cobalt over 300–1400K Temperature Range,” J. Appl. Phys. 108, 083525 (2010).

    Article  ADS  Google Scholar 

  19. L. Rémy and A. Pineau,, “Temperature Dependence of Stacking Fault Energy in Close-Packed Metals and Alloys,” Mater. Sci. Engng 36(11), 47–63 (1978).

    Article  Google Scholar 

  20. C. Mabire and P. L. Hereil, “Shock Induced Polymorphic Transition and Melting of Tin,” in Shock Compression of Condensed Matter 1999, Ed. by M. D. Furnish, et al., No. 505 (AIP, 2000), pp. 93–96.

    Google Scholar 

  21. W. W. Anderson, F. Cverna, R. S. Hixsonl, et al., “Phase Transition and Spall Behavior in β-Tin,” in Shock Compression of Condensed Matter 1999, Ed. by M. D. Furnish, et al., No. 505 (AIP, 2000), pp. 443–446.

    Google Scholar 

  22. T. de Rességuier, L. Signor, A. Dragon, et al., “Spallation in Laser Shock-Loaded Tin below and just above Melting on Release,” J. Appl. Phys. 102, 073535 (2007).

    Article  ADS  Google Scholar 

  23. T. de Rességuier, L. Signor, A. Dragon, et al., “Experimental Investigation of Liquid Spall in Laser Shock-Loaded Tin,” J. Appl. Phys. 101, 031506 (2007).

    Google Scholar 

  24. J.-P. Davis and D. B. Hayes, “Measurement of the Dynamic β-γ Phase Boundary in Tin,” in Shock Compression of Condensed Matter, Ed. by M. Elert, et al., No. 955 (AIP, 2007), pp. 159–162.

    Google Scholar 

  25. E. B. Zaretsky and G. I. Kanel, “Dynamic Response of Sn over the Temperature Range 115–503 K,” in DYMAT 2009 (EDP Sciences, 2009), pp. 27–33.

    Chapter  Google Scholar 

  26. F. M. G. Thijssen, Effect of Strain on Microstructural Evolution during Dynamic Recrystallization: Experiments on Tin, in Doctor of Sciences Theses (Utrecht Univ., Netherland, 2004).

    Google Scholar 

  27. E.B. Zaretsky and G. I. Kanel, “Plastic Flow in Shock-Loaded Silver at Strain Rates from 104 s−1 to 107 s−1 and Temperatures from 296K to 1233 K,” J. Appl. Phys. 110, 073502 (2011).

    Article  ADS  Google Scholar 

  28. E. V. Zaretsky and G. I. Kanel, “Effect of Temperature, Strain, and Strain Rate on the Flow Stress of Aluminum under Shock-Wave Compression,” J. Appl. Phys. 112, 073504 (2012).

    Article  ADS  Google Scholar 

  29. E. B. Zaretsky and G. I. Kanel, “Response of Copper to Shock-Wave Loading at Temperatures up to the Melting Point,” J. Appl. Phys. 114(7), 083511 (2013).

    Article  ADS  Google Scholar 

  30. S. V. Razorenov, A. S. Savinykh, and E. B. Zaretsky, “Elastic-Plastic Deformation and Fracture of Shock Compressed Single Crystal and Polycrystalline Copper near Melting,” Techn. Phys. 58(10), 1437–1442 (2013).

    Article  ADS  Google Scholar 

  31. E. B. Zaretsky and G. I. Kanel, “Impact Response and Dynamic Strength of Partially Melted Aluminum Alloy,” J. Appl. Phys. 112, 053511 (2012).

    Article  ADS  Google Scholar 

  32. M. A. Stremmel, Alloy Strength, Part 1: Lattice Defects (MISIS, Moscow, 1999) [in Russian].

    Google Scholar 

  33. E.B. Zaretsky and G. I. Kanel, “Impact Response of Nickel in the 150–1150 K Temperature Range,” J. Appl. Phys. 105, 093508 (2009).

    Article  ADS  Google Scholar 

  34. E. B. Zaretsky, “Softening of Nickel in the Vicinity of Its Curie Point,” J. Appl. Phys. 92, 011913 (2008).

    Google Scholar 

  35. R. Golkov, D. Kleiman, and E. B. Zaretsky, “Impact Response of Single Crystal Potassium Chloride at Elevated Temperatures,” in AIP Conference Proc., 2004, No. 706, pp. 735–738.

  36. V. Favorsky and E. B. Zaretsky, “Impact Response of Potassium Bromide at 166–880 K Temperature Range,” J. Appl. Phys. 108, 073528 (2010).

    Article  ADS  Google Scholar 

  37. V. A. Al’shitz and V. L. Indenbom, “Dynamic Dragging of Dislocation,” Sov. Phys.-Uspekhi 18(1), 1–20 (1975).

    Article  ADS  Google Scholar 

  38. D. L. Olmsted, G. Hecto, W. A. Gurtin, and R. J. Clifton, “Atomistic Simulations of Dislocation Mobility in Al, Ni, and Al/Mg Alloys,” Model. Simul. Mater. Sci. 13, 371–378 (2005).

    Article  ADS  Google Scholar 

  39. A. Yu. Kuksin, V. V. Stegailov, A. V. Yanilkin, “Molecular-Dynamics Simulation of Edge-Dislocation Dynamics in Aluminum,” Dokl. Phys. 53(6), 287–291 (2008).

    Article  ADS  Google Scholar 

  40. S. Queyreau, J. Marian, M. R. Gilbert, and B. D. Wirth, “Edge DislocationMobilities in BCC Fe Obtains by Molecular Dynamics,” Phys. Rev. B. 84, 064106 (2011).

    Article  ADS  Google Scholar 

  41. A. Yu. Kuksin, V. V. Stegailov, and A. V. Yanilkin, “Molecular-Dynamics Simulation of Edge-Dislocation Dynamics in Aluminum,” Dokl. Phys. 53(6), 287–291 (2008).

    Article  ADS  Google Scholar 

  42. A. Yu. Kuksin and A.V. Yanilkin, “Atomistic Simulation of the Motion of Dislocations in Metals under Phonon Drag Conditions,” Phys. Solid State 55(5), 1010–1119 (2013).

    Article  ADS  Google Scholar 

  43. N. R. Barton, J. V. Bernier, R. Becker, et al., “A Multiscale Strength Model for Extreme Loading Conditions,” J. Appl. Phys. 109, 073501 (2011).

    Article  ADS  Google Scholar 

  44. A. L. Korzhenevskii, R. Bausch, and R. Schmitz, “Dislocation Drag Close to a Phase Transition,” Phys. Rev. B 67, 100103 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Zaretskii.

Additional information

Original Russian Text © E.B. Zaretskii, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 6, pp. 27–40.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaretskii, E.B. High-temperature phase transitions. Properties and equilibrium of phases under shock-wave loading. Mech. Solids 49, 623–634 (2014). https://doi.org/10.3103/S002565441406003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S002565441406003X

Keywords

Navigation