Skip to main content
Log in

Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The paper deals with issues related to the construction of solutions, 2 π-periodic in the angular variable, of the Mathieu differential equation for the circular elliptic cylinder harmonics, the associated characteristic values, and the azimuthal numbers needed to form the elementary elliptic cylinder wave functions. A superposition of the latter is one possible form for representing the analytic solution of the thermoelastic wave propagation problem in long waveguides with elliptic cross-section contour. The classical Sturm-Liouville problem for the Mathieu equation is reduced to a spectral problem for a linear self-adjoint operator in the Hilbert space of infinite square summable two-sided sequences. An approach is proposed that permits one to derive rather simple algorithms for computing the characteristic values of the angular Mathieu equation with real parameters and the corresponding eigenfunctions. Priority is given to the application of the most symmetric forms and equations that have not yet been used in the theory of the Mathieu equation. These algorithms amount to constructing a matrix diagonalizing an infinite symmetric pentadiagonal matrix. The problem of generalizing the notion of azimuthal number of a wave propagating in a cylindrical waveguide to the case of elliptic geometry is considered. Two-sided mutually refining estimates are constructed for the spectral values of the Mathieu differential operator with periodic and half-periodic (antiperiodic) boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Kovalev and Yu. N. Radaev, Wave Problems in Field Theory and Thermomechanics (Izd-vo Saratov Univ., Saratov, 2010) [in Russian].

    Google Scholar 

  2. Yu. N. Radaev and M. V. Taranova, “Cross-Coupled Thermoelastic Wave Field in a Long Waveguide with Elliptical Cross-Section,” Vestnik Chuvash. Gos. Ped. Univ. im I. Ya. Yakovleva. Ser. Mekh. Pred. Sost. 1(9), 183–196 (2011).

    Google Scholar 

  3. E. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique,” J. Math. Pures et Appl. 13, 137–203 (1868).

    MATH  Google Scholar 

  4. G.W. Hill, “On the Part of the Motion of Lunar Perigee which is a Function of the Mean Motions of the Sun and Moon,” Acta Math. 8(1), 1–36 (1886).

    Article  MATH  MathSciNet  Google Scholar 

  5. M. J. O. Strutt, Lame, Mathieu and Related Functions in Physics and Technology (Springer, Berlin, 1932; Gostekhizdat Ukrainy, Kharkov-Kiev, 1935).

    Google Scholar 

  6. N. W. MacLachlan, Theory and Applications of Mathieu Functions (Clarendon, Oxford, 1947; Izd-vo Inostr. Liter., Moscow, 1953).

    Google Scholar 

  7. G. Sansone, Ordinary Differential Equations, Vol. 1 (Bologna, 1948; Izd-vo Inostr. Lit., Moscow, 1953).

    Google Scholar 

  8. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations (McGraw-Hill, New York, 1955; Izd-vo Inostr. Lit., Moscow, 1958).

    MATH  Google Scholar 

  9. F.M. Arscott, Periodic Differential Equations. An Introduction to Mathieu, Lamé, and Allied Functions (Pergamon Press, Oxford, 1964).

    MATH  Google Scholar 

  10. M. Abramowitz and I. A. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables (Dover, New York: 1972; Nauka, Moscow, 1979).

    MATH  Google Scholar 

  11. J. Kampé de Fériet, R. Campbell, G. Petiau, and T. Vogel, Functions of Mathematical Physics. Reference Book (Centre National de la Recherche Scientitique, Paris, 1957; Fizmatgiz, Moscow, 1963).

    Google Scholar 

  12. M. A. Naimark, Linear Differential Operators (Gostekhizdat, Moscow, 1954) [in Russian].

    Google Scholar 

  13. V. A. Marchenko, Spectral Theory of Sturm-Liouville Operators (Naukova Dumka, Kiev, 1972) [in Russian].

    MATH  Google Scholar 

  14. B. M. Levitan and I. S. Sargsyan, Sturm-Liouville and Dirac Operators (Nauka, Moscow, 1988) [in Russian]

    MATH  Google Scholar 

  15. F. R. Gantmakher, Theory of Matrices (Gostekhizdat, Moscow, 1953) [in Russian].

    Google Scholar 

  16. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Clarendon, Oxford, 1965; Nauka, Moscow, 1970).

    MATH  Google Scholar 

  17. R. Bellman, Introduction to Matrix Analysis (McGraw-Hill, London, 1960; Nauka, Moscow, 1969).

    MATH  Google Scholar 

  18. R. A. Horn and Ch. R. Johnson, Matrix Analysis (Cambridge Univ. Press, NY, 1985; Mir, Moscow, 1989).

    Book  MATH  Google Scholar 

  19. A. M. Ostrowsky, “Über die Determinanten mitüberwiegender Hauptdiagonale,” Comment. Math. Helv. 10, 69–96 (1937).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kovalev.

Additional information

Original Russian Text © V.A. Kovalev, Yu.N. Radaev, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 3, pp. 23–43.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalev, V.A., Radaev, Y.N. Estimates of azimuthal numbers associated with elementary elliptic cylinder wave functions. Mech. Solids 49, 253–269 (2014). https://doi.org/10.3103/S0025654414030029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654414030029

Keywords

Navigation