Skip to main content
Log in

Exact Thomas precession related solutions of the inertial navigation equations

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

Abstract

The aim of the present paper is to give a survey of those exact solutions of relativistic inertial navigation equations which are directly or indirectly related to Thomas precession. Various cases of uniform circular motion of an object in gravity-free space close to motion with inertial or orbital attitude are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Yu. Ishlinskii, Mechanics: Ideas, Problems, Applications (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  2. R. Feynman, R. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 1: Mainly Mechanics, Radiation, and Heat (Addison-Wesley, Reading,MA, 1963–1965; Mir, Moscow, 1965).

    Google Scholar 

  3. L. I. Sedov, Basic Models in Mechanics (Izd-vo MGU, Moscow, 1992) [in Russian].

    MATH  Google Scholar 

  4. I. D. Blumin, “Chap. 6. Theory of Inertial Navigation Systems,” in Progress in General Mechanics in Russia and Ukraine in the 1920–1980s (Nauka, Moscow, 1998; Feniks, Kiev, 1998), pp. 148–181 [in Russian].

    Google Scholar 

  5. M. I. Kaganov, “The Publication of the Physics Encyclopedia Has Been Completed,” Uspekhi Fiz. Nauk 169(11), 1283–1287 (1999) [Phys. Uspekhi (Engl. Transl.) 42 (11), 1177–1181 (1999)].

    Article  Google Scholar 

  6. M. M. Kuritsky, M. S. Goldstein, I. A. Greenwood, et al. “Inertial Navigation,” Proc. IEEE (Special Edition “Global Navigation Systems”), Vol. 71(10), 1156–1176 (1983) [TIEER (Russ. Transl.) Vol. 71 (10), 47–74 (1983)].

    Google Scholar 

  7. “Inertial Navigation,” in Polytechnical Dictionary (Sov. Entsiklopediya, 1989) [in Russian].

  8. Yu. G. Martynenko, “Inertial Navigation,” Soros. Obrazovat. Zh., No. 8, 102–108 (1998).

    Google Scholar 

  9. L. A. Dmitrochenko and V. I. Lopatin, “Specific Features of Algorithms of Strapdown Inertial Navigation Systems,” in Problems of Spacecraft Control (according to Foreign Materials) (Mir, Moscow, 1975), pp. 95–117 [in Russian].

    Google Scholar 

  10. V. V. Yagodkin, Strapdown Inertial Navigation Systems (MVTU, Moscow, 1979) [in Russian].

    Google Scholar 

  11. L. A. Dmitrochenko, V. P. Gora, and G. F. Savinov, Strapdown Inertial Navigation Systems (MAI, Moscow, 1984) [in Russian].

    Google Scholar 

  12. V. N. Branets and I. P. Shmyglevskii, Introduction to the Theory of Strapdown Inertial Navigation Systems (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  13. L. A. Fokin and A. G. Shchipitsyn, “Strapdown Inertial Navigation Systems for High Precision Near-Earth Navigation and Satellite Geodesy: Analysis of Operation and Errors,” Izv. Akad. Nauk. Teor. Sist. Upr., No. 3, 164–176 (2008) [J. Comput. Syst. Sci. Int. (Engl. Transl.) 47 (3), 485–497 (2008)].

    Google Scholar 

  14. V. P. Seleznev and N. V. Selezneva, Navigational Bionics (Mashinostroenie, Moscow, 1987) [in Russian].

    Google Scholar 

  15. “Information about the Meeting of the Scientific Council in ‘General Mechanics’,” Izv. Akad. Nauk SSSR. Mekh. Tverd. Tela, No. 2, 204–205 (1970) [Mech. Solids. (Engl. Transl.)].

  16. Mechanics and Navigation. Proc. of Scientific Session Dedicated to A. Yu. Ishlinskii on the Occasion of His 85th Birthday (Inst. for Problems in Mechanics, RAS, Moscow, September 30, 1998) (GNTs RF-TsNII “Elektropribor,” St. Petersburg, 1999) [in Russian].

  17. V. N. Branets, E. A. Mikrin, V. N. Platonov, et al., “Navigation Support of International Space Station,” in Xth St. Petersburg Intern. Conf. in Integral Navigation Systems (GNTs RF-TsNII “Elektropribor,” St. Petersburg, 2003), pp. 7–13 [in Russian].

    Google Scholar 

  18. V. Ph. Zhuravlev, “On the Solution of Equations of the Linear Oscillator with Respect to the Matrix of the Inertial Trihedron,” Dokl. Ross. Akad. Nauk 404(4), 491–495 (2005) [Dokl. Phys. (Engl. Transl.) 50 (10), 519–523 (2005)].

    MathSciNet  Google Scholar 

  19. V. Ph. Zhuravlev, “A Strapdown Inertial System of Minimum Dimension (A 3D Oscillator as a Complete Inertial Sensor),” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 5–10 (2005) [Mech. Solids (Engl. Transl.) 40 (5), 1–5 (2005)].

    Google Scholar 

  20. K. Popper, “What is the Dialectics,” Voprosy Filosofii, No. 1, 118–138 (1995).

    Google Scholar 

  21. G. B. Malykin and G. V. Permitin, “Thomas Precession,” in Physical Encyclopedia, Vol. 5 (Bol’shaya Ros. Entsiklopediya, Moscow, 1998), p. 123 [in Russian].

    Google Scholar 

  22. L. Belloni and C. Reina, “Thomas Precession; Sommerfeld Approach,” in Einstein Collection, 1984–1985 (Nauka, Moscow, 1988), pp. 201–214 [in Russian].

    Google Scholar 

  23. Yu. M. Shirokov, “Lorentz Transformations,” in Physical Encyclopedic Dictionary, Vol. 3 (Sov. Entsiklopediya, Moscow, 1963), pp. 17–19 [in Russian].

    Google Scholar 

  24. D. D. Sokolov, “Lorentz Transformation,” in Mathematical Encyclopedia, Vol. 3 (Sov. Entsiklopediya, Moscow, 1982), pp. 453–454 [in Russian].

    Google Scholar 

  25. M. I. Voitsekhovskii, “Boost,” in Mathematical Physics. Encyclopedia (Bol’shaya Ros. Entsiklopediya, Moscow, 1998), p. 63 [in Russian].

    Google Scholar 

  26. L. P. Grishchuk, “Lorentz Transformations,” in Physical Encyclopedia, Vol. 2 (Sov. Entsiklopediya, Moscow, 1990), pp. 608–609 [in Russian].

    Google Scholar 

  27. H. Poincaré, “On the Dynamics of the Electron,” in Relativity Principle, Collection of Papers in Special Theory of Relativity (Atomizdat, Moscow, 1973), pp. 118–161 [in Russian].

    Google Scholar 

  28. M.-A. Tonnelat, The Principles of Electromagnetic Theory and of Relativity (Masson, Paris, 1959; Izd-vo Inostr. Lit., Moscow, 1962; Springer, 1966).

    Google Scholar 

  29. C. Møller, The Theory of Relativity (Clarendon Press, Oxford, 1952; Atomizdat, Moscow, 1975).

    Google Scholar 

  30. Ch.W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, Vol. 3 (Freeman, 1973; Mir, Moscow, 1977).

    Google Scholar 

  31. A. A. Logunov, Henri Poincaré and Relativity Theory (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  32. I. Kobzarev, “Introduction,” in Einstein Collection, 1984–1985 (Nauka, Moscow, 1988), pp. 5–6 [in Russian].

    Google Scholar 

  33. G. B. Malykin, “Thomas Precession: Correct and Incorrect Solutions,” Uspekhi Fiz. Nauk 176(8), 865–882 (2006) [Phys. Uspekhi (Engl. Transl.) 49 (8), 837–855 (2006)].

    Article  Google Scholar 

  34. I. Yu. Kobzarev, “Theory of Relativity,” in Physical Encyclopedia, Vol. 3 (Bol’shaya Ros. Entsiklopediya, Moscow, 1992), pp. 493–502 [in Russian].

    Google Scholar 

  35. K. Caratheodory, “To the Axiomatics of the Special Theory of Relativity,” in Progress in Contemporary Physics (Nauka, Moscow, 1964), pp. 167–187 [in Russian].

    Google Scholar 

  36. M. I. Monastyrskii, “Quaternions,” in Physical Encyclopedia, Vol. 2 (Sov. Entsiklopediya, Moscow, 1990), p. 345 [in Russian].

    Google Scholar 

  37. N. V. Aleksandrova, History of Mathematical Terms, Concepts, Notation, Dictionary-Reference Book (Izd-vo LKI, Moscow, 2007) [in Russian].

    Google Scholar 

  38. L. S. Polak, William Hamilton: 1805-1865 (Nauka, Moscow, 1993) [in Russian].

    MATH  Google Scholar 

  39. V. F. Chub, “On the Possibility of Application of one System of Hypercomplex Numbers in Inertial Navigation,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 6, 3–23 (2002) [Mech. Solids (Engl. Transl.) 37 (6), 1–17 (2002)].

    Google Scholar 

  40. Yu. N. Chelnokov, Quaternion and Biquaternion Models and Methods of Mechanics of Solids and Their Applications. Geometry and Kinematics of Motion (Fizmatlit, Moscow, 2006) [in Russian].

    Google Scholar 

  41. Yu. N. Chelnokov, Quaternion Models and Methods of Dynamics, Navigation, and Motion Control (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  42. V. V. Malanin and N. A. Strelkova, Optimal Control of Attitude and Helical Motion of a Rigid Body (NITs “Regular and Chaotic Dynamics,” Moscow-Izhevsk, 2004) [in Russian].

    Google Scholar 

  43. D. E. Burlankov, Time, Space, Gravity (NITs “Regular and Chaotic Dynamics,” Moscow-Izhevsk, 2006) [in Russian].

    Google Scholar 

  44. A. Lightman, W. Press, R. Price, and S. Teukolsky,Problem Book in Relativity and Gravitation (Princeton Univ. Press, Princeton, 1975; Mir,Moscow, 1979).

    MATH  Google Scholar 

  45. A. P. Efremov, Quaternion Spaces, Reference Systems, and Fields (Izd-vo RUDN, Moscow, 2005) [in Russian].

    Google Scholar 

  46. E. V. Zakharova, “New Books on Physics and Related Sciences,” Uspekhi Fiz. Nauk 173(10), 1149–1152 (2003) [Phys. Uspekhi (Engl. Transl.) 46 (10), 1117–1120 (2003)].

    Article  Google Scholar 

  47. V. F. Chub, “Use of the Conformal Group in the Theory of Inertial Navigation,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 5, 3–17 (2006) [Mech. Solids (Engl. Transl.) 41 (5), 1–12 (2006)].

    Google Scholar 

  48. R. H. Cannon Jr., “Requirements and Design for a Special Gyro for Measuring General Relativity Effects from an Astronomic Satellite,” in Problems of Gyroscopy (Mir, Moscow, 1967), pp. 129–143 [in Russian].

    Google Scholar 

  49. V. B. Braginskii, “Gravitational Experiments from Cavendish to the Present,” Priroda, No. 12, 70–75 (1981).

    Google Scholar 

  50. I. Lisov, “Was Einstein so Right The Gravity Probe-B Was Placed into Orbit 45 Years Later after the Birth of the Idea?” Novosti Kosmonavt. 14(6), 30–33 (2004).

    Google Scholar 

  51. I. Lisov, “The Gravity Probe-B is in Operation,” Novosti Kosmonavt. 14(11), 48–49 (2004).

    Google Scholar 

  52. V. G. Peshekhonov, “A Unique Gyro Ensured Verification of General Relativity,” Giroskop. Navigats., No. 4, 111–114 (2007).

    Google Scholar 

  53. V. Ph. Zhuravlev, “Limiting Accuracy of an Ideal Gyroscope,” Dokl. Ross. Akad. Nauk 410(2), 200–202 (2006) [Dokl. Phys. (Engl. Transl.) 51 (9), 517–519 (2006)].

    MathSciNet  Google Scholar 

  54. V. Ph. Zhuravlev, “On the Limiting Accuracy of a Free Gyro,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 5–9 (2006) [Mech. Solids (Engl. Transl.) 41 (4), 1–4 (2006)].

    Google Scholar 

  55. A. V. Berkov, E. D. Zhizhin, and I. Yu. Kobzarev, Einstein’s Gravitation Theory and Its Experimental Consequencies (Izd-vo MIFI, Moscow, 1981) [in Russian].

    Google Scholar 

  56. A. A. Logunov, Theory of Gravitational Field (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  57. D. E. Burlankov and G. B. Malykin, “Thomas Precession by Pseudoquaternions,” Giperkompl.ChislaGeom. Fiz. 2(2(4)), 147–152 (2005).

    Google Scholar 

  58. V. A. Bordovitsyn and V. V. Telushkin, “Thomas Precession and Spin,” Izv. Vyssh. Uchebn. Zaved. Fiz. 49(11), 81–86 (2006) [Russ. Phys. J. (Engl. Transl.) 49 (11), 1241–1248 (2006)].

    Google Scholar 

  59. V. I. Ritus, “On the Difference between Wigner’s and Møller’s Approaches to the Description of Thomas Precession,” Uspekhi Fiz. Nauk 177(1), 105–112 (2007) [Phys. Uspekhi (Engl. Transl.) 177 (1), 95–102 (2007)].

    Article  Google Scholar 

  60. E. A. Nemchenko, “On Thomas precession in the Classical Theory of Relativistic Radiation,” Izv. Vyssh. Uchebn. Zaved. Fiz. 54(3), 86–88 (2011) [Russ. Phys. J. (Engl. Transl.) 54 (3), 360–363 (2011)].

    Google Scholar 

  61. J. D. Jackson, Classical Electrodynamics (Wiley, 1962; Mir,Moscow, 1965) [in Russian].

    Google Scholar 

  62. G. B. Malykin, “The Relation of Thomas Precession to Ishlinskii’s Theorem as Applied to the Rotating Image of a Relativistically Moving Body,” Uspekhi Fiz. Nauk 169(5), 585–590 (1999) [Phys. Uspekhi (Engl. Transl.) 169 (5), 505–509 (1999)].

    Article  MathSciNet  Google Scholar 

  63. G. B. Malykin, “The Application of the Solid-Angle Theorem in the Special Theory of Relativity,” Prikl. Mat. Mekh. 63(5), 775–780 (1999) [J. Appl.Math. Mech. (Engl. Transl.) 63 (5), 731–735 (1999)].

    MATH  MathSciNet  Google Scholar 

  64. G. A. Zaitsev, “On the Relation between the Theory of Relativity and the Theory of Groups,” in M.-A. Tonnelat, The Principles of Electromagnetic Theory and of Relativity (Izd-vo Inostr. Lit., Moscow, 1962), pp. 447–475 [in Russian].

    Google Scholar 

  65. A. V. Babichenko and A. P. Rogalev, “To the Problem of the SINS Algorithm Accuracy Control,” Aviakosmich. Priborostr., No. 10, 27–29 (2006).

    Google Scholar 

  66. V. F. Chub, “On the Uniformly AcceleratedMotion,” Fizich. Obrazov. VUZ 11(3), 127–130 (2005).

    Google Scholar 

  67. V. F. Chub, “Nonclosure of Elemenary Space-Time Transformations,” Giperkompl. Chisla Geom. Fiz. 2(2(4)), 153–160 (2005).

    Google Scholar 

  68. V. F. Chub, “Inertial Navigation Equations and the Quaternion Space-Time Theory,” Giperkompl. Chisla Geom. Fiz. 4(1(7)), 133–140 (2007).

    Google Scholar 

  69. V. F. Chub, “Formulation of the Problem of Inertial Navigation: AGroup Theory Approach,” Kosmich. Issled. 45(2), 189–192 (2007) [Cosmic. Res. (Engl. Transl.) 45 (2), 176–179 (2007)].

    Google Scholar 

  70. V. F. Chub, “Statement of the Two-Body Problem in the Parameters of the Extended Galilei Group,” Izv. Akad. Nauk.Mekh. Tverd. Tela, No. 4, 16–20 (2012) [Mech. Solids (Engl. Transl.) 47 (4), 385–389 (2012)].

    Google Scholar 

  71. V. F. Chub, “Inertial Navigation Teaching Methods for Students of Physical-Technical Institute,” Fizich. Obrazov. VUZ 18(3), 137–145 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Chub.

Additional information

Original Russian Text © V.F. Chub, 2014, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2014, No. 2, pp. 3–18.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chub, V.F. Exact Thomas precession related solutions of the inertial navigation equations. Mech. Solids 49, 113–126 (2014). https://doi.org/10.3103/S0025654414020010

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654414020010

Keywords

Navigation