Skip to main content
Log in

A. D. Alexandrov’s problem for non-positively curved spaces in the sense of Busemann

  • Published:
Russian Mathematics Aims and scope Submit manuscript

Abstract

This paper is the last of a series devoted to the solution of Alexandrov’s problem for non-positively curved spaces. Here we study non-positively curved spaces in the sense of Busemann. We prove that isometries of a geodesically complete connected at infinity proper Busemann space X are characterized as follows: If a bijection f: XX and its inverse f −1 preserve distance 1, then f is an isometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Berestovskii, “Isometries in Aleksandrov Spaces of Curvature Bounded Above,” Ill. J. Math. 46(20), 645–656 (2002).

    MATH  MathSciNet  Google Scholar 

  2. P. D. Andreev, “Recovering the Metric of a CAT(0)-Space by a Diagonal Tube,” Zap. nauch. sem. POMI 299, 5–29 (2003).

    Google Scholar 

  3. P. D. Andreev, “A. D. Alexandrov’s Problem for CAT(0)-Spaces,” Sib. Matem. Zhurn. 47(1), 3–24 (2006).

    MATH  Google Scholar 

  4. B. H. Bowditch, “Minkowskian Subspaces of Non-Positively Curved Metric Spaces,” Bull. London Math. Soc. 27(6), 575–584 (1995).

    Article  MATH  MathSciNet  Google Scholar 

  5. A. Papadopoulos, Metric Spaces, Convexity and Nonpositive Curvature (European Math. Society, Zürich, 2005).

    MATH  Google Scholar 

  6. T. Hosaka, “Limit Sets of Geometrically Finite Groups Acting on Busemann Spaces,” Topology and Appl. 122(3), 565–580 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  7. Ph. K. Hotchkiss, “The Boundary of a Busemann space,” Proc. Amer. Math. Soc. 125(7), 1903–1912 (1997).

    Article  MATH  MathSciNet  Google Scholar 

  8. W. Rinow, Die innere Geometrie der metrischen Räume (Springer-Verlag, Berlin-Göttingen-Heidelberg, 1961).

    MATH  Google Scholar 

  9. P. D. Andreev, “The Geometry of Ideal Boundaries of Geodesic Spaces with Non-Positive Curvature in the Sense of Busemann,” Matem. Trudy 10(1), 16–28 (2007).

    Google Scholar 

  10. S. Cohn-Vossen, “Existenz kürzester Wege,” C. R. (Dokl.) Acad. Sci. USSR, n. Ser., No. 3, 339–342 (1935).

  11. M. Rieffel, “Group C*-Algebras as Compact Quantum Metric Spaces,” Doc. Math., J. DVM 7, 605–651 (2002).

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Andreev.

Additional information

Original Russian Text © P.D. Andreev, 2010, published in Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2010, No. 9, pp. 10–35.

About this article

Cite this article

Andreev, P.D. A. D. Alexandrov’s problem for non-positively curved spaces in the sense of Busemann. Russ Math. 54, 7–29 (2010). https://doi.org/10.3103/S1066369X10090021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1066369X10090021

Key words and phrases

Navigation