Skip to main content
Log in

Surface morphology and structural types of natural impact apographitic diamonds

  • Production, Structure, Properties
  • Published:
Journal of Superhard Materials Aims and scope Submit manuscript

Abstract

External and internal morphologies of natural impact apographitic diamonds (paramorphoses) have been studied. The (0001) surface morphology of the paramorphoses reflects their phase composition and the structural relationship of its constituting phases. Growth and etch figures together with the elements of crystal symmetry of lonsdaleite and diamond are developed on these surfaces. The crystal size of lonsdaleite is up to 100 nm, and that of diamond is up to 300 nm. Two types of structural relations between graphite, lonsdaleite, and diamond in the paramorphoses are observed: the first type (black, black-gray, colorless and yellowish paramorphoses): the (0001) graphite face is parallel to the (100) lonsdaleite face and parallel to (111) diamond; the second type (milky-white paramorphoses): the (0001) graphite is parallel to the (100) lonsdaleite and parallel to the (112) diamond. The first type of the paramorphoses contains lonsdaleite, diamond, graphite or diamond, lonsdaleite, the second type of the paramorphoses contains predominantly diamond. The direct phase transition of graphite → lonsdaleite and/or graphite →diamond occurred in the paramorphoses of the first type. A successive phase transition graphite → lonsdaleite → diamond was observed in the paramorphoses of the second type. The structure of the paramorphoses of this type shows characteristic features of recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Valter, A.A., Erjomenko, G.K., Kvasnitsa, V.N., and Polkanov, Yu.A., Udarno-metamorfogennye mineraly ygleroda(Shock-metamorphogenetic carbon minerals), Kiev: Naukova Dumka, 1992.

    Google Scholar 

  2. Vishnevsky, S.A., Afanasyev, V.P., Argunov, K.P., and Palchik, N.A., Impactnye almazy: ikh osobennosti, proiskhozhdenie i znachenie (Impact diamonds: their features, origin and significance), Novosibirsk: izd. SIC Siberian Branch of RAS, 1997.

    Google Scholar 

  3. Langenhorst, F., Shafranovsky, G.I., Masaitis, V.L., and Koivisto, M., Discovery of impact diamonds in a Fennoscandian crater and evidence for their genesis by solid-state transformation, Geology, 1999, vol. 27, no. 8, pp. 747–750.

    Article  CAS  Google Scholar 

  4. Koeberl, C., Masaitis, V.L., Shafranovsky, G.I., et al., Diamonds from the Popigai impact structure, Geology, 1997, vol. 25, no. 11, pp. 967–970.

    Article  CAS  Google Scholar 

  5. Gorogotskaya, L.I., Kvasnitsa, V.N., and Nadezhdina, Ye.D., Orientational relations of graphite–lonsdaleite–diamond at natural transformations in shock waves, Mineral. J. (Ukraine), 1989, vol. 11, no. 1, pp 26–33.

    CAS  Google Scholar 

  6. Kurdyumov, A.V. and Pilyankevich, A.N., Fazovye prevrashcheniya v uglerode i nitride bora (Phase transformations in carbon and boron nitride), Kiev: Naukova Dumka, 1979.

    Google Scholar 

  7. Godinho, J.R., Piazolo, S., and Evans, L.Z., Effect of surface orientation on dissolution rates and topography of CaF2, Geochim. Cosmochim. Ac., 2012, vol.86, pp. 392–403.

    Article  CAS  Google Scholar 

  8. Godinho, J., Piazolo, S., and Balic-Zunic, T., Importance of surface structure on dissolution of fluorite: implications for surface dynamics and dissolution rates, Ibid., 2014, vol. 126, pp. 398–410.

    CAS  Google Scholar 

  9. Kvasnytsya, V. and Wirth, R., Micromorphology and internal structure of apographitic impact diamonds: SEM and TEM study, Diam. Relat. Mater., 2013, vol. 32, pp. 7–16.

    Article  CAS  Google Scholar 

  10. Wirth, R., Focused ion beam (FIB): A novel technology for advanced application of microand nanoanalysis in geoscience and applied mineralogy, Eur. J. Mineral., 2004, vol. 16, pp. 863–876.

    Article  CAS  Google Scholar 

  11. Wirth, R., Focused ion beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometer scale, Chemical Geology, 2009, vol. 261, pp. 217–229.

    CAS  Google Scholar 

  12. Trimby, P.W., Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope, Ultramicroscopy, 2012, vol. 120, pp. 16–24.

    Article  CAS  Google Scholar 

  13. Wyckoff, R.W.G., Crystal Structures, 2nd ed., vol. 1, pp. 7–83, New York: John Wiley and Sons, 1963.

    Google Scholar 

  14. Valter, A.A., Oleinik, G.S., Fisenko, A.V., and Semenova, L.F, Structural and morphological evidence of the impact-induced development of diamond after graphite in the Novo-Urei meteorite, Geochemistry Int., 2003, vol. 41, pp. 939–946.

    Google Scholar 

  15. Nakamuta, Y. and Toh, S., Transformation of graphite to lonsdaleite and diamond in the Goalpara ureilite directly observed by TEM, Am. Mineral., 2013, vol. 98, pp. 574–581.

    Article  CAS  Google Scholar 

  16. Garvie, L.A.J., Németh, P., and Buseck, P.R., Transformation of graphite to diamond via a topotactic mechanism, Ibid., 2014, vol. 99, pp. 531–538.

    Google Scholar 

  17. Wheeler, E.J. and Lewis, D., The structure of a shock-quenched diamond, Mater. Research Bulletin, 1975, vol. 10, no. 7, pp. 687–694.

    Article  CAS  Google Scholar 

  18. Bundy, F.P. and Kasper, J.S., Hexagonal diamonda new form of carbon, J. Chem. Phys., 1967, vol. 46, no. 9, pp. 3437–3446.

    Article  CAS  Google Scholar 

  19. Lonsdale, K., Formation of lonsdaleite from single-crystal graphite, Am. Mineral., 1971, vol. 56, pp. 333–336.

    Google Scholar 

  20. Sokhor, M.I. and Futergendler, S.I., X-ray crystallographic study of diamond-lonsdaleite crystals, Crystallography, 1974, vol. 19, no. 4, pp. 759–762.

    CAS  Google Scholar 

  21. Kurdyumov, A.V., Malogolovets, V.G., Novikov, N.V., et al., Polimorfnye modifikatsii ugleroda i nitrida bora (Polymorphic modifications of carbon and boron nitride), Moscow: Metallurgiya, 1994.

    Google Scholar 

  22. Oleinik, G.S., Valter, A.A., and Erjomenko, G.K., The structure of high lonsdaleite diamond grains from the impactites of the Belilovka (Zapadnaja) astrobleme (Ukraine), 34th Lunar and Planetary Sci. Conf. LPI, 17–21 March, 2003, Houston, Texas, USA, Abstr. no.1561.

    Google Scholar 

  23. Kurdyumov, A.V., Britun, V.F., Yarosh, V.V., et al., The influence of the shock compression conditions on the graphite transformations into lonsdaleite and diamond, J. Superhard Mater., 2012, vol. 34, no. 1, pp. 19–27.

    Article  Google Scholar 

  24. Masaitis, V.L., Impaktnye almazy Popigaiskoi astroblemy: ikh osnovnye svoistva i promyshlennoe primenenie (Impact diamonds of Popigai astrobleme: their principal features and industrial uses), Proc. Rus. Mineral. Soc., 2013, vol. 142, no. 2, pp. 1–10.

    CAS  Google Scholar 

  25. Trueb, L.F., An electron-microscope study of shock-synthesized diamond, J. Appl. Phys., 1968, vol. 39, no. 10, pp. 4707–4716.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Kvasnytsya.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvasnytsya, V., Wirth, R., Piazolo, S. et al. Surface morphology and structural types of natural impact apographitic diamonds. J. Superhard Mater. 38, 71–84 (2016). https://doi.org/10.3103/S1063457616020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063457616020015

Keywords

Navigation