Skip to main content
Log in

A structural study of biocompatible magnetic nanofluid with synchrotron radiation-based X-ray scattering techniques

  • Published:
Moscow University Physics Bulletin Aims and scope

Abstract

In this paper, water colloidal solutions of nanoparticles of magnetite (magnetic nanofluids, (MNFs)) are investigated by synchrotron X-ray diffraction (XRD) and small-angle scattering (SAXS). To prevent aggregation, nanoparticles are coated with polyacrylic acid (PAA) in a single solution and citric (CA) in the other solutions. In both cases, the maxima of the particle size distribution from SAXS (9–10 nm) correspond to the sizes of the magnetite crystallites that were estimated from the broadening of the diffraction lines. In addition, the SAXS data indicate the presence of a significant proportion of aggregates (up to 60 nm in diameter) in both colloidal solutions, although fundamental differences in the structures of aggregates between the MNFs stabilized by PAA and CA were not observed. In this study determination of the structural characteristics of MNFs were carried out in order to obtain stable dispersive non-aggregating nanoparticles of magnetite for use as contrast agents in magnetic resonance tomography, drug carriers, and other biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles (Am. Sci. Publ., Los-Angeles, CA, 2002).

    Google Scholar 

  2. M. V. Avdeev and V. L. Aksenov, Phys. Usp. 53, 971 (2010).

    Article  ADS  Google Scholar 

  3. R. E. Rosensweig, Ferrohydrodynamics (Cambridge Univ. Press, Cambridge, 1985).

    Google Scholar 

  4. S. Taketomi and S. Chikazumi, Magnetic Fluids — Principle and Application (Nikkan Kogyo Shinbun, Tokyo, 1988; Mir, Moscow, 1993), p. 69.

    Google Scholar 

  5. S. Odenbach, Ferrofluids. Magnetically Controllable Fluids and their Applications, Lect. Notes in Physics, Vols. 233–251 (Springer, Berlin, 2002).

    Google Scholar 

  6. D. V. Orlov, Yu. A. Mikhalev, and A. P. Sizov, Magnetic Fluids in Engineering (Mashinostroenie, Moscow, 1993) [in Russian].

    Google Scholar 

  7. Proceedings of the 10th International Conference on Magnetic Fluids, J. Magn. Magn. Mater. 289 (2005).

  8. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003).

    Article  ADS  Google Scholar 

  9. I. Brigger, C. Dubernet, and P. Couvreur, Adv. Drug. Deliv. Rev. 54, 631 (2002).

    Article  Google Scholar 

  10. S. Mornet, S. Vasseur, F. Grasset, and E. Duguet, J. Mater. Chem. 14, 2161 (2004).

    Article  Google Scholar 

  11. S. C. Wuang, K. G. Heoh, E. T. Kang, et al., Adv. Funct. Mater. 16, 1723 (2006).

    Article  Google Scholar 

  12. E. Duguet, S. Mornet, S. Vasseur, et al., Nanomedicine 1, 157 (2006).

    Article  Google Scholar 

  13. J. P. Fortin, C. Wilhelm, J. Servais, et al., J. Am. Chem. Soc. 129, 2628 (2007).

    Article  Google Scholar 

  14. M. V. Abdeev, B. Mucha, K. Lamszus, et al., Langmuir 26, 8503 (2010).

    Article  Google Scholar 

  15. L. Vtkas, M. V. Avdeev, and D. Bica, “Magnetic Nanofluids: Synthesis and Structure,” in Nanoscience and Its Applications in Biomedicine, Ed. by D. Shi (Springer, Berlin, 2009), p. 645.

    Google Scholar 

  16. R. Massart, E. Dubois, V. Cabuil, and E. Hasmonay, J. Magn. Magn. Mater. 149, 1 (1995).

    Article  ADS  Google Scholar 

  17. A. Hajdu, E. Tombacz, E. Illes, et al., Progr. Colloid. Polym. Sci. 135, 29 (2008).

    Google Scholar 

  18. L. Vekas, M. V. Avdeev, and D. Bica, China Particuol. 5, 43 (2007).

    Article  Google Scholar 

  19. E. Tombacz, D. Bica, A. Hajdu, et al., J. Phys. Condens. Matter 20, 204103 (2008).

    Article  ADS  Google Scholar 

  20. V. Zavisova, M. Koneracká, M. Múčková, et al., J. Magn. Magn. Mater. 323, 1408 (2011).

    Article  ADS  Google Scholar 

  21. D. L. Bica, L. Vekas, M. V. Avdeev, et al., J. Magn. Magn. Mater. 311, 17 (2007).

    Article  ADS  Google Scholar 

  22. J. Halavaara, P. Tervahartiala, H. Isoniemi, and K. Hockerstedt, Acta Radiol. 43, 180 (2002).

    Article  Google Scholar 

  23. S. Benderbous, C. Corot, P. Hacobs, and B. Bonnemain, Acad. Radiol. 3, 292 (1996).

    Article  Google Scholar 

  24. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Meth. Phys. Res. A 603, 95 (2009).

    Article  ADS  Google Scholar 

  25. D. I. Svergun, J. Appl. Crystallogr. 25, 495 (1992).

    Article  Google Scholar 

  26. P. V. Konarev, V. V. Volkov, A. V. Sokolova, et al., J. Appl. Crystallogr. 36, 1277 (2003).

    Article  Google Scholar 

  27. G. K. Williamson and W. H. Hall, Acta Metall. 1, 22 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shulenina.

Additional information

Original Russian Text © A.V. Shulenina, M.V. Avdeev, V.L. Aksenov, A.A. Veligzhanin, Ya.V. Zubavichus, A. Hajdu, E. Trombacz, 2012, published in Vestnik Moskovskogo Universiteta. Fizika, 2012, No. 2, pp. 38–43.

About this article

Cite this article

Shulenina, A.V., Avdeev, M.V., Aksenov, V.L. et al. A structural study of biocompatible magnetic nanofluid with synchrotron radiation-based X-ray scattering techniques. Moscow Univ. Phys. 67, 186–191 (2012). https://doi.org/10.3103/S0027134912020154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0027134912020154

Keywords

Navigation