Skip to main content
Log in

Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes

  • Published:
Mechanics of Solids Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The molecular mechanics (MM) method is used to determine the frequencies and natural vibration shapes and to determine the buckling critical parameters and the postcritical deformation shapes of single-walled carbon nanotubes with twisted ends. The following two variants of the MM method are used: the standard MM method and the mixed method of molecular mechanics/molecular structure mechanics method (MM/MSM). Computer simulation shows that the MM/MSM method allows one to obtain acceptable values of frequencies and natural vibration shapes as well as of critical angles of twist, appropriate buckling modes, and postcritical deformation configurations of nanotubes compared with the same characteristics of nanotube free vibrations and buckling obtained by the standard MM method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Suarez-Martinez, N. Grobert, and C. P. Ewels, “Nomenclature of sp2 Carbon Nanoforms,” Carbon 50, 741–747 (2012).

    Article  Google Scholar 

  2. M. J. Buehler, Atomic Modeling of Materials Failure (Springer, New York, 2008).

    Book  Google Scholar 

  3. W. K. Liu, E. G. Karpov, and H. S. Park, Nano Mechanics and Materials: Theory, Multiscale Methods and Applications (Wiley, Chichester, 2006).

    Book  Google Scholar 

  4. H. Rafii-Tabar, Computational Physics of Carbon Nanotubes (Cambreidge Univ. Press, Cambridge, 2008).

    Google Scholar 

  5. B. I. Yakobson and L. S. Couchman, “Carbon Nanotubes: Supramolecular Mechanics,” in Dekker Encyclopedia of Nanoscience and Nanotechnology (Marcel Dekker, New York, 2004), pp. 587–601.

    Google Scholar 

  6. J. Z. Zhang, Z. L. Wang, J. Liu, et al., Self-Assembled Nanostructures (Kluwer Acad. Publ., New York, 2004).

    Google Scholar 

  7. E. G. Rakov, Nanotubes and Fullerenes (Logos, Moscow, 2006) [in Russian].

    Google Scholar 

  8. V. A. Eremeev, E. A. Ivanova, and N. F. Morozov, “Mechanical Problems in Nanotechnology,” Izv. Sarat. Univ. Ser. Mat., Mekh., Inf. 8(3), 25–31 (2008).

    Google Scholar 

  9. A. M. Krivtsov, Deformation and Fracture of Solids with Microstructure (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  10. J. Wackerfuss, “Molecular Mechanics in the Context of the Finite Element Method,” Int. J. Numer. Meth. Engng 77(7), 969–997 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Belytschko, S. P. Xiao, G. C. Schatz, and R. S. Ruoff, “Atomistic Simulations of Nanotube Failure,” Phys. Rev. B 65, 235430 (2002).

    Article  ADS  Google Scholar 

  12. C.-L. Zhang and H.-S. Shen, “Buckling and Postbuckling Analysis of Single-Walled Carbon Nanotubes in Thermnal Environment via Molecular Dynamics Simulation,” Carbon 44, 2608–2616 (2006).

    Article  Google Scholar 

  13. R. C. Batra and S. S. Gupta, “Wall Thickness and Radial Breathing Modes of Single-Walled Carbon Nanotubes,” Trans. ASME. J. Appl. Mech. 75, 061010 (2008).

    Article  ADS  Google Scholar 

  14. R. Ansari, S. Sahmani, and H. Rouhi, “Rayleigh-Ritz Axial Buckling Analysis of Single-Walled Carbon Nanotubes with Different Boundary Conditions,” Phys. Lett. A 375(9), 1255–1263 (2011).

    Article  ADS  Google Scholar 

  15. A. R. Khoei, E. Ban, P. Banihashemi, and M. J. Adolhosseini Qomi, “Effects of Temperature and Torsion Speed on Torsional Properties of Single-Walled Carbon Nanotubes,” Mat. Sci. Engng. C 31(2), 452–457 (2011).

    Article  Google Scholar 

  16. H. Y. Song and X. W. Zha, “Molecular Dynamics Study of Effects of Nickel Coating on Torsional Behavior of Single-Walled Carbon Nanotubes,” Physica B 406, 992–995 (2011).

    Article  ADS  Google Scholar 

  17. F. W. Sun and H. Li, “Torsional Strain Energy Evolution of Carbon Nanotubes and Their Stability with Encapsulated Helical Copper Nanowires,” Carbon 49, 1408–1415 (2011).

    Article  Google Scholar 

  18. N. M. Pugno and J. A. Elliott, “Buckling of Peapods, Fullerenes and Nanotubes,” Physica E 44, 944–948 (2012).

    Article  ADS  Google Scholar 

  19. N. Silvestre, B. Faria, and G. N. C. Lopes, “AMolecular Dynamics Study on the Thickness and Post-Critical Strength of Carbon Nanotubes,” Compos. Struct. 94, 1352–1358 (2012).

    Article  Google Scholar 

  20. S. N. Korobeinikov, “Buckling Criteria of Atomic Lattices,” in CDICF11 Full Papers: The 11th Int. Conf. on Fracture. Turino. Sect. 30 ‘Nano- or Micro-Scale’, Ed. by A. Carpinteri (2005), ID 5597.

  21. S. N. Korobeinikov, “Nonlinear Equations of Deformation of Atomic Lattices,” Arch.Mech. 57(6), 457–475 (2005).

    Google Scholar 

  22. G. M. Odegard, T. S. Gates, L. M. Nicholson, and E. Wise, “Equivalent-Continuum Modeling of Nano-Structured Materials,” Compos. Sci. Technol. 62(14), 1869–1880 (2002).

    Article  Google Scholar 

  23. T. S. Gates, G. M. Odegard, S. J. V. Frankland, and T. C. Clancy, “Computational materials: Multi-Scale Modeling and Simulation of Nanostructured Materials,” Compos. Sci. Technol. 65(15–16), 2416–2434 (2005).

    Article  Google Scholar 

  24. R. V. Goldstein and A. V. Chentsov, “Discrete-Continuous Model of a Nanotube,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 57–74 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 45–59 (2005)].

  25. R. V. Goldstein, A. V. Chentsov, R. M. Kadushnikov, and N. A. Shturkin, “Methodology and Metrology for Mechanical Testing of Nano- and Microdimensional Objects, Materials, and Products of Nanotechnology,” Ross. Nanotekhnol. 3(1–2), 114–124 (2008) [Nanotechnol. Russ. (Engl. Transl.) 3 (1–2), 112-121 (2008)].

    Google Scholar 

  26. M. Arroyo and T. Belytschko, “An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films,” J. Mech. Phys. Solids 50, 1941–1977 (2002).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. M. Arroyo and T. Belytschko, “A Finite Deformation Membrane Based on Inner-Atomic Potentials for the Transverse Mechanics of Nanotubes,” Mech.Mater. 35(3–6), 193–215 (2003).

    Article  Google Scholar 

  28. P. Dluźewski and P. Traczykowski, “Numerical Simulation of Atomic Positions in Quantum Dot by Means of Molecular Statics,” Arch.Mech. 55(5–6), 393–406 (2003).

    MATH  Google Scholar 

  29. S. S. Gupta and R. C. Batra, “Basic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets,” J. Comput. Theor. Nanosci. 7, 1–14 (2010).

    Article  Google Scholar 

  30. S.N. Korobeinikov, Finite Element Method Used to Solve Nonlinear Problems of Deformation and Loss of Stability of Atomic Lattices, Preprint No. 1-97 (IGiL SO RAN, Novosibirsk, 1997) [in Russian].

    Google Scholar 

  31. S. N. Korobeinikov, “The Numerical Solution of Nonlinear Problems on Deformation and Buckling of Atomic Lattices,” Int. J. Fract. 128, 315–323 (2004).

    Article  MATH  Google Scholar 

  32. B. Liu, Y. Huang, H. Jiang, et al., “The Atomic-Scale Finite Element Method,” Comput. Methods Appl. Mech. Engng 193, 1849–1864 (2004).

    Article  ADS  MATH  Google Scholar 

  33. A.Y.T. Leung, X. Guo, and X. Q. He, “Postbuckling of Carbon Nanotubes by Atomic-Scale Finite Element,” J. Appl. Phys. 99, 124308 (2006).

    Article  ADS  Google Scholar 

  34. B. D. Annin, S. N. Korobeinikov, and A. B. Babichev, “Computer Simulation of Nanotube Buckling in Torsion,” Sib. Zh. Industr. Mat. 11(1), 3–22 (2008).

    MathSciNet  MATH  Google Scholar 

  35. B. D. Annin, V. V. Alekhin, A. B. Babichev, and S. N. Korobeinikov, “Computer Simulation of Nanotube Contact,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 3, 56–76 (2010) [Mech. Solids (Engl. Transl.) 45 (3), 352–369 (2010)].

  36. R. Ansari and S. Rouhi, “Atomic Finite Element Model for Axial Buckling of Single-Walled Carbon Nanotubes,” Physica E 43, 58–69 (2010).

    Article  ADS  Google Scholar 

  37. A. F. Avila, A. C. Eduardo, A. S. Neto, “Vibrational Analysis of Graphene Based Nanotstructures,” Comput. Struct. 89, 878–892 (2011).

    Article  Google Scholar 

  38. M.M. S. Fakhrabadi, M. Samadzadeh, A. Rastgoo, et al., “Vibrational Analysis of Carbon Nanotubes Using Molecular Mechanics and Artificial Neural Network,” Physica E 44, 565–578 (2011).

    Article  ADS  Google Scholar 

  39. M. M. S. Fakhrabadi, N. Khanib, R. Omidvarc, and A. Rastgoo, “Investigation of Elastic and Buckling Properties of Carbon Nanocones Using Molecular Mechanics Approach,” Comput. Mater. Sci. 61, 248–256 (2012).

    Article  Google Scholar 

  40. R. D. Firouz-Abadi and A. R. Hosseinian, “Free Vibrations of Single-Walled Carbon Nanotubes in the Vicinity of a Fully Constrained Graphene Sheet,” Comput. Mater. Sci. 53, 12–17 (2012).

    Article  Google Scholar 

  41. G. I. Giannopoulos, P. A. Kakavas, and N. K. Anifantis, “Evaluation of the Effective Mechanical Properties of Single-Walled Carbon Nanotubes Using a Spring Based Finite Element Approach,” Comput. Mater. Sci. 41, 561–569 (2008).

    Article  Google Scholar 

  42. N. Hu, K. Nunoya, D. Pan, et al., “Prediction of Buckling Characteristics of Carbon Nanotubes,” Int. J. Solids Struct. 44, 6535–6550 (2007).

    Article  MATH  Google Scholar 

  43. Z. Kang, M. Li, and Q. Tang, “Buckling Behavior of Carbon Nanotube-Based Intramolecular Junction under Compression: Molecular Dynamics Simulation and Finie Elements Analysis,” Comput. Mater. Sci. 50, 253–259 (2010).

    Article  Google Scholar 

  44. J. H. Lee and B. S. Lee, “Modal Analysis of Carbon Nanotubes and Nanocones Using FEM,” Comput. Mater. Sci. 51, 30–42 (2012).

    Article  Google Scholar 

  45. J. H. Lee, B. S. Lee, F. T. K. Au, J. Zhangc, and Y. Zeng, “Vibrational and Dynamic Analysis of C60 and C30 Fullerenes Using FEM,” Comput.Mater. Sci. 56, 131–140 (2012).

    Article  Google Scholar 

  46. C. Y. Li and T. W. Chou, “A Structural Mechanics Approach for the Analysis of Carbon Nanotubes,” Int. J. Solids Struct. 40(10), 2487–2499 (2003).

    Article  MATH  Google Scholar 

  47. B. Liu, H. Jiang, Y. Huang, et al., “Atomic-Scale Finite Element Method in Multiscale Computation with Applications to Carbon Nanotubes,” Phys. Rev. B 72, 035435 (2005).

    Article  ADS  Google Scholar 

  48. E. Mahmoudinezhad, R. Ansari, A. Basti, and M. Hemmatnezhad, “An Accurate Spring-Mass Model for Predicting Mechanical Properties of Single-Walled Carbon Nanotubes,” Comput. Mater. Sci. 62, 6–11 (2012).

    Article  Google Scholar 

  49. L. Nasdala, A. Kempe, and R. Rolfes, “Are Finite Elements Appropriae for Use in Molecular Dynamcis Simulation?” Compos. Sci. Technol. 72, 989–1000 (2012).

    Article  Google Scholar 

  50. V. Parvaneh, M. Shariati, and H. Torabi, “Frequency Analysis of Perfect and Defective SWCNTs,” Comput. Mater. Sci. 50, 2051–2056 (2011).

    Article  Google Scholar 

  51. R. Rafiee and M. Heidarhaei, “Investigation of Chirality and Diameter Effects on the Young’s Modulus of Carbon Nanotubes Using Non-Linear Potentials,” Compos. Struct. 94, 2460–2464 (2012).

    Article  Google Scholar 

  52. S. Rouhi and R. Ansari, “Atomic Finite ElementModel for Axial Buckling and Vibrational Analysis of Single-Layered Graphene Sheets,” Physica E 44, 764–772 (2012).

    Article  ADS  Google Scholar 

  53. E. I. Saavedra-Flores, S. Adhikari, M. I. Fristwell, and F. Scarpa, “Hyperelastic Axial Buckling of Single Wall Carbon Nanotubes,” Physica E 44, 525–529 (2011).

    Article  ADS  Google Scholar 

  54. J. M. Wernik and S. A. Meguid, “Atomistic-Based Continuum Modeling of the Nonlinear Behavior of Carbon Nanotubes,” Acta Mech. 212, 167–179 (2010).

    Article  MATH  Google Scholar 

  55. S. N. Korobeinikov and A. V. Babichev, “Numerical Simulation od Dynamic Deformation and buckling of Nanostructures,” in CD ICF Interquadrennial Conf. Full Papers (Institute for Problems in Mechanics, Moscow, 2007).

    Google Scholar 

  56. S. N. Korobeinikov and A. V. Babichev, “Nanotube Buckling under Sudden Application of a Constant Axial Load,” in Mathematical Modeling of Systems and Processes, Collection of Scientific Papers No. 16 (Izd-vo PGTU, Perm, 2008), pp. 43–54 [in Russian].

    Google Scholar 

  57. S. N. Korobeinikov, V. D. Annin, and A. V. Babichev, “Buckling Criteria for Nanostructures and Their Applications in Computer Simulation of Nanotube Twisting,” in CD Proc. 18th Europ. Conf. on Fracture (Dresden TU, Dresden, 2010).

    Google Scholar 

  58. V. A. Eremeyev, E. A. Ivanova, N. F. Morozov, and A.N. Solov’ev, “On the Determination of Eigenfrequencies for Nanometer-SizeObjects,” Dokl. Ross. Akad. Nauk 406(6), 756–759 (2006) [Dokl. Phys. (Engl. Transl.) 51 (2), 93–97 (2006)].

    Google Scholar 

  59. N. G. Chopra, L. Kh. Benedict, V. N. Crespi, et al., “Fully Collapsed Carbon Nanotubes,” Nature 377, 135–138 (1995).

    Article  ADS  Google Scholar 

  60. C. M. Wang, Y. Y. Zhang, Y. Xiang, and J. N. Reddy, “Recent Studies on Buckling of Carbon Nanotubes,” Appl.Mech. Rev. 63, 030804 (2010).

    Article  ADS  Google Scholar 

  61. R. Senga, K. Hirahara, and Y. Nakayama, “Nanotorsional Actuator Using Transition between Flattened and Tubular States in Carbon Nanotubes,” Appl. Phys. Lett. 100, 083110 (2012).

    Article  ADS  Google Scholar 

  62. L. A. Girifalco, M. Hodak, and R. S. Lee, “Carbon Nanotubes, Buckyballs, Ropes, and a Universal Graphitic Potential,” Phys. Rev. B 62, 13104–13110 (2000).

    Article  ADS  Google Scholar 

  63. A. Curnier, Computational Methods in Solid Mechanics (Kluwer Academic Publ., Dordrecht, 1994).

    Book  MATH  Google Scholar 

  64. S.N. Korobeinikov, V. P. Agapov, M. I. Bondarenko, and A. N. Soldatkin, “The General Purpose Nonlinear Finite Element Structural Analysis Program PIONER,” in Proc. Int. Conf. on Numerical Methods and Applications (Publ. House of the Bulgarian Acad. of Sci., Sofia, 1989), pp. 228–233.

    Google Scholar 

  65. K.-J. Bathe, Finite Element Procedures (Prentice Hall, New Jersey, 1996).

    Google Scholar 

  66. S. N. Korobeinikov, Nonlinear Deformation of Solids (Sib. Otdel. RAN, Novosibirsk, 2000) [in Russian].

    Google Scholar 

  67. L. H. N. Lee, “On Dynamic Stability and Quasi-Bifurcation,” Int. J. Nonlin.Mech. 16, 79–87 (1981).

    Article  MATH  Google Scholar 

  68. M. Kleiber, W. Kotula, and M. Saran, “Numerical Analysis of Dynamic Quasi-Bifurcation” Engng Comput. 4, 48–52 (1987).

    Article  Google Scholar 

  69. V. I. Shalashilin and E. B. Kuznetsov, Parametric Continuation Method and Optimal Parametrization (Izd-vo URSS, Moscow, 1999) [in Russian].

    Google Scholar 

  70. PATRAN Users Guide (MSC Software Corporation, Santa Ana, 2011).

  71. A. V. Babichev, “Automating Model Construction and Visualization of Results of Numerical Simulation of Deformation of Nanostructures,” Vych.Mekh. Sploshn. Sred 1(4), 21–27 (2008).

    Google Scholar 

  72. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, “Electronic Structure of Chiral Graphene Tubules,” Appl. Phys. Lett. 60, 2204–2206 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Annin.

Additional information

Original Russian Text © B.D. Annin, V.V. Alekhin, A.V. Babichev, S.N. Korobeynikov, 2012, published in Izvestiya Akademii Nauk. Mekhanika Tverdogo Tela, 2012, No. 5, pp. 65–83.

About this article

Cite this article

Annin, B.D., Alekhin, V.V., Babichev, A.V. et al. Molecular mechanics method applied to problems of stability and natural vibrations of single-layer carbon nanotubes. Mech. Solids 47, 544–559 (2012). https://doi.org/10.3103/S0025654412050081

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0025654412050081

Keywords

Navigation