Skip to main content
Log in

Laser ablation of alloys: Selective evaporation model

  • Optical Spectroscopy
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A mechanism of non-stoichiometric laser ablation is proposed and experimentally verified for multicomponent alloys. The analysis of four-component bronze samples in various excitation modes and the recorded laser plasma spectra revealed that disproportion of plasma elements during laser evaporation arises from selective evaporation of components at the heating-melting-evaporation stage. Correction coefficients proportional to the work function of the alloy component vapor in the heating-melting-evaporation cycle are calculated for the plasma spectrum. Correction procedure for the spectral lines leads to a good agreement of the measured sample composition with the tabulated data. To check that the proposed approach is universal, aluminum alloys and iron alloys (high-alloy stainless steels) are analyzed. It is found that selective evaporation for aluminum alloys is lower than for bronzes. Evaporation selectivity was insignificant for stainless steels. The proposed mechanism for selective evaporation during laser ablation and correction of the plasma spectrum make it unnecessary to use a standard in the quantitative elemental analysis of complex bronze and aluminum alloy samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. A. Cremers and L. J. Radziemski, Handbook of Laser Induced Spectroscopy (Wiley, N.Y., 2006), 300 p.

    Book  Google Scholar 

  2. Pulsed Laser Deposition of Thin Films, Ed. by D. B. Chrisey, G. K. Hubler (Wiley, N.Y., 1994), 650 p.

    Google Scholar 

  3. A. M. Prokhorov, V. I. Konov, I. Ursu, and I.N. Mihailescu, Laser Heating of Metals (Adam Hilger, Bristol, U.K., 1990)].

    Google Scholar 

  4. E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev, J. Gagnon, M. Uiberacker, A. L. Aquila, E.M. Gullikson, D. T. Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-Cycle Nonlinear Optics,” Science. 320, 1614 (2008).

    Article  ADS  Google Scholar 

  5. Yu. Ya. Kuzyakov, V. N. Lednev, N.V. Alov, I. O. Volkov, N. B. Zorov, and R. D. Voronina, “Carbon Nitride Film Synthesis by Double Pulse Laser Deposition,” VestnikMGU. Khimiya. 48, 134 (2007).

    Google Scholar 

  6. C. Nouvellon, C. Chaleard, J. L. Lacour, and P. Mauchien, “Stoichiometry Study of Laser Produced Plasma by Optical Emission Spectroscopy,” Appl. Surf. Sci. 138–139, 306 (1999).

    Article  Google Scholar 

  7. F. Colao, R. Fantoni, V. Lazic, L. Caneve, A. Giardini, V. Spizzichino, “LIBS as a Diagnostic Tool During the Laser Cleaning of Copper Based Alloys: Experimental Results,” J. Anal. At. Spectrom. 19, 502 (2004).

    Article  Google Scholar 

  8. A. Ciussi, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, and E. Tognoni, “New Procedure for Quantitative Elemental Analysis by Laser-Induced Plasma Spectroscopy,” Appl. Spectrosc. 53(8), 960 (1999).

    Article  ADS  Google Scholar 

  9. E. Tognoni, G. Cristoforetti, S. Legnaioli, and V. Palleschi, “Calibration-Free Laser-Induced Breakdown Spectroscopy: State of the Art,” Spectrochim. Acta B. 64(1), 1 (2010).

    Article  ADS  Google Scholar 

  10. A. Ciucci, V. Palleschi, S. Rastelli, A. Salvetti, D.P. Singh, and E. Tognoni, “CF-LIBS: A New Approachto LIPS Spectra Analysis,” Laser Part. Beams. 17, 793 (1999).

    Article  ADS  Google Scholar 

  11. A. M. El Sherbini, Th.M. El Sherbini, H. Hegazy, G. Cristoforetti, S. Legnaioli, V. Palleschi, L. Pardini, A. Salvetti, and E. Tognoni, “Evaluation of Self-Absorption Coefficients of Aluminum Emission Lines in Laser-Induced Breakdown Spectroscopy Measurements,” Spectrochim. Acta B. 60(12), 1573 (2005).

    Article  ADS  Google Scholar 

  12. D. Hahn and N. Omenetto, “Laser Induced Breakdown Spectroscopy (LIBS), Part I: Review of Basic Diagnostics and Plasma-Particle Interactions: Still-Challenging Issues within the Analytical Plasma Community,” Appl. Spectrosc. 64, 335A (2010).

    Article  ADS  Google Scholar 

  13. L. Dudragne, Ph. Adam, and J. Amouroux, “Time-Resolved Laser-Induced Breakdown Spectroscopy: Application for Qualitative and Quantitative Detection of Fluorine, Chlorine, Sulfur, and Carbon in Air,” Appl. Spectrosc. 52(10), 1321 (1998).

    Article  ADS  Google Scholar 

  14. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A Procedure for Correcting Self-Absorption in Calibration Free-Laser Induced Breakdown Spectroscopy,” Spectrochim. Acta B. 57, 339 (2002).

    Article  ADS  Google Scholar 

  15. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, and C. Vallebon, “Double Pulse Calibration-Free Laser-Induced Breakdown Spectroscopy: A New Technique for in Situ Standard-Less Analysis of Polluted Soils,” Appl. Geochem. 21, 748 (2006).

    Article  Google Scholar 

  16. L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration Analysis of Bronze Samples by Nanosecond Laser Induced Breakdown Spectroscopy: A Theoretical and Experimental Approach,” Spectrochim. Acta B. 60, 1186 (2005).

    Article  ADS  Google Scholar 

  17. W. T. Chan and R.E. Russo, “Optical Emission Spectroscopy Studies of the Influence of Laser Ablated Mass on Dry Inductively Coupled Plasma Conditions,” Spectrochim. Acta B. 46, 1471 (1991).

    Article  ADS  Google Scholar 

  18. O.V. Borisov, X. L. Mao, and R.E. Russo, “Effects of Crater Development on Fractionation and Signal Intensity During Laser Ablation Inductively Coupled Plasma Mass Spectrometry,” Spectrochim. Acta B. 55, 1693 (2000).

    Article  ADS  Google Scholar 

  19. A. M. Popov, T. A. Labutin, and N.B. Zorov, “Application of Laser-Induced Breakdown Spectrometry for Analysis of Environmental and Industrial Materials,” Moscow Univ. Chem. Bull. 50, 453 (2009).

    Google Scholar 

  20. X. Mao, W. T. Chan, and R. E. Russo, “Influence of Sample Surface Condition on Chemical Analysis Using Laser Ablation Inductively Coupled Plasma Atomic Emission Spectroscopy,” Appl. Spectrosc. 51, 1047 (1997).

    Article  ADS  Google Scholar 

  21. R. E. Russo, X. L. Mao, W. T. Chan, M. F. Bryant, and W. F. Kinard, “Laser Ablation Sampling with Inductively Coupled Plasma Atomic Emission Spectrometry for the Analysis of Prototypical Glasses,” J. Anal. At. Spectrom. 10, 295 (1995).

    Article  Google Scholar 

  22. M. Guillong and D. Gunther, “Effect of Particle Size Distribution on ICP-Induced Elemental Fractionation in Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry,” J. Anal. At. Spectrom. 17, 831 (2002).

    Article  Google Scholar 

  23. D. Figg and M. S. Kahr, “Elemental Fractionation of Glass Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry,” Appl. Spectrosc. 51, 1185 (1997).

    Article  ADS  Google Scholar 

  24. J. M. Baldwin, “Q-Switched Laser Sampling of Copper-Zinc Alloys,” Appl. Spectrosc. 24, 429 (1970).

    Article  ADS  Google Scholar 

  25. R. E. Russo, X. L. Mao, C. Liu, and J. Gonzalez, “Laser Assisted Plasma Spectrochemistry: Laser Ablation,” J. Anal. At. Spectrom. 19, 1084 (2004).

    Article  Google Scholar 

  26. C. Liu, X. L. Mao, S. S. Mao, X. Zeng, R. Greif, and R. E. Russo, “Nanosecond and Femtosecond Laser Ablation of Brass: Particulate and ICPMS Measurements,” Anal. Chem. 76, 379 (2004).

    Article  Google Scholar 

  27. R. E. Russo, X. Mao, J. J. Gonzalez, and S. S. Mao, “Femtosecond Laser Ablation ICP-MS,” J. Anal. At. Spectrom. 17, 1072 (2002).

    Article  Google Scholar 

  28. S. M. Pershin and F. Colao, “Laser Plasma Emission Spectrum Corrected for the Quantitative Analysis of Alloys,” Tech. Phys. Lett. 31(9), 741 (2005).

    Article  Google Scholar 

  29. V. N. Lednev and S.M. Pershin, “Plasma Stoichiometry Correction Method in Laser-Induced Breakdown Spectroscopy,” Laser Phys. 18, 1 (2008).

    Article  Google Scholar 

  30. S. M. Pershin, F. Colao, and V. Spizzichino, “Quantitative Analysis of Bronze Samples by Laser-Induced Breakdown Spectroscopy (LIBS): A New Approach, Model, and Experiment,” Laser Phys. 16(3), 455 (2006).

    Article  ADS  Google Scholar 

  31. C. Geertsen, A. Briand, F. Chartier, J.-L. Lacour, P. Mauchien, S. Sjostrom, and J.-M. Mermet, “Comparison between Infrared and Ultraviolet Laser Ablation at Atmospheric Pressure-Implications for Solid Sampling Inductively Coupled Plasma Spectrometry,” J. Anal. At. Spectrom. 9, 17 (1994).

    Article  Google Scholar 

  32. Ya.B. Zeldovich and L.D. Landau, “On Relationship between the Liquid and Gaseous States in Metals,” Zh. Eksp. Teor. Fiz. 14, 32 (1944).

    Google Scholar 

  33. X. Xu and K. Song, “Interface Kinetics During Pulsed Laser Ablation,” Appl. Phys. A. 69, S869 (1999).

    Article  ADS  Google Scholar 

  34. I. K. Kikoin and A.P. Senchenkov, “Electrical Conduction and the Equation of State of Mercury in the Temperature Range 0–2000 and Pressure Region 200–5000 Atmospheres,” Fiz. Met. Metalloved. 24, 843 (1967).

    Google Scholar 

  35. A. M. Prokhorov, V.A. Batanov, F.V. Bunkin, and V. B. Fedorov, “Metal Evaporation under Powerful Optical Radiation,” IEEE J. Quantum Electron. 9(5), 503 (1973).

    Article  ADS  Google Scholar 

  36. J. M. Fishburn, M. J. Withford, D.W. Coutts, and J. A. Piper, “Method for Determination of the Volume of Material Ejected as Molten Droplets During Visible Nanosecond Ablation,” Appl. Opt. 43, 6473 (2004).

    Article  ADS  Google Scholar 

  37. J. A. Aguilera, C. Aragon, G. Cristoforetti, and E. Tognoni, “Application of Calibration-Free Laser-Induced Breakdown Spectroscopy to Radially Resolved Spectra from a Copper-Based Alloy Laser-Induced Plasma,” Spectrochim. Acta B. 64, 685 (2009).

    Article  ADS  Google Scholar 

  38. D. Bulajic, M. Corsi, G. Cristoforetti, S. Legnaioli, V. Palleschi, A. Salvetti, and E. Tognoni, “A Procedure for Correcting Self-Absorption in Calibration Free-Laser Induced Breakdown Spectroscopy,” Spectrochim. Acta B. 57, 339 (2002).

    Article  ADS  Google Scholar 

  39. C. Aragon and J.A. Aguilera, “Characterization of Laser Induced Plasmas by Optical Emission Spectroscopy: A Review of Experiments and Methods,” Spectrochim. Acta B. 63, 893 (2008).

    Article  ADS  Google Scholar 

  40. H. R. Griem, Plasma Spectroscopy (McGraw-Hill, London, 1964), 581 p.

    Google Scholar 

  41. F. Colao, V. Lazic, R. Fantoni, and S. Pershin, “A Comparison of Single and Dual Pulse Laser-Induced Breakdown Spectroscopy of Aluminum Samples,” Spectrochim. Acta B. 57, 1167 (2002).

    Article  ADS  Google Scholar 

  42. G. Arumov, A. Bukharov, O. Kamenskaya, S. Kotyanin, V. Krivoshchekov, A. Lyash, V. Nekhaenko, and S. Pershin, “Effect of Surface Irradiation Regime on the Emission Spectrum of a Laser Plasma,” Pisma Zh. Eksp. Teor. Fiz. 13(14), 870 (1987).

    Google Scholar 

  43. S. M. Pershin, “Physical Mechanism of Suppression of the Emission of Radiation by Atmospheric Gases in a Plasma Formed as a Result of Two-Pulse Irradiation of the Surface,” Sov. J. Quantum Electron. 19(12), 1618 (1989).

    Article  ADS  Google Scholar 

  44. B. Sallé, J.-L. Lacour, P. Mauchien, P. Fichet, et al. “Comparative Study of Different Methodologies for Quantitative Rock Analysis by Laser-Induced Breakdown Spectroscopy in a Simulated Martian Atmosphere,” Spectrochim. Acta B. 61, 301 (2006).

    Article  ADS  Google Scholar 

  45. ESA’s Homepage for the AURORA ExoMars Mission: www.esa.int/SPECIALS/Aurora/SEM1NVZKQAD-0.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

About this article

Cite this article

Pershin, S.M., Lednev, V.N. & Bunkin, A.F. Laser ablation of alloys: Selective evaporation model. Phys. Wave Phen. 19, 261–274 (2011). https://doi.org/10.3103/S1541308X11040054

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X11040054

Keywords

Navigation