Skip to main content
Log in

Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea)

  • Original Research Paper
  • Published:
Oceanological and Hydrobiological Studies

Abstract

Species composition of plankton ciliates was studied in the Curonian Lagoon in 2007–2008 and compared to long term investigations dating back to the 1980th. In total, 152 taxa were identified at the level of species or genera. More species (76 species/higher taxa) was found in the estuarine part of the Lagoon due to temporally unstable salinity and the presence of both freshwater and brackish/marine species. Some of the brackish/marine species: Tintinnopsis baltica, Tintinnopsis kofoidi, Cothurnia maritima, Lohmaniella oviformis, Lohmaniella spiralis and Helicostomella subulatum were recorded for the first time in the lagoon. The ciliate community at the freshwater sites was less diverse, containing 63 species/higher taxa in the central stagnant part of the Lagoon and 47 — in the Nemunas River avandelta. The comparison of present and past studies revealed that the use of a single live-counting method could lead to underestimation of small nanociliate species, whereas examination of Lugol fixed material provides relatively poor taxonomic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antanynienė A., Baranauskienė A., Budrienė S., Jankevičiūtė G., Jankevičius K., Kasperovičienė J., Kučinskienė A., Mažeikaitė S., Šlapkauskaitė G., Šulijienė R. 1994. Hydrobiological Condition and Water Quality Estimation of Kuršių Marios Lagoon, 1991. Environmental Studies in the Nemunas River Basin, Lithuania. Montana: 73–83.

  • Arndt H. 1991. On the importance of planktonic protozoans in the eutrophication process of the Baltic Sea. International Review of Hydrobiology 76: 387–396.

    Article  Google Scholar 

  • Azam F., Fenchel T., Field J.G., Gray J.S., Meyer-Reil L.A., Thingstad F. 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.

    Article  Google Scholar 

  • Bernard C., Rassoulzadegan F. 1990. Bacteria or microflagellates as a major food source for marine ciliates: possible implications for the microzooplankton. Marine Ecology Progress Series 64: 147–155.

    Article  Google Scholar 

  • Beusekom J.E.E., Mengedoht D., Augustin C.B., Schilling M., Boersma M. 2007. Phytoplankton, protozooplankton and nutrient dynamics in the Bornholm Basin (Baltic Sea) in 2002–2003 during the German GLOBEC Project. International Journal of Earth Sciences 98: 251–260.

    Article  Google Scholar 

  • Boikova E. 1984. Ecological character of protozoans (Ciliata, Flagellata) in the Baltic Sea. Ophelia 3: 23–32.

    Google Scholar 

  • Boikova E. 1989. Protozoans — biomonitors of marine environement. Riga: Zinatne (in Russian).

    Google Scholar 

  • Choi J.W., Stoecker D.K. 1989. Effects of fixation on cell volume of marine planktonic protozoa. Applied Environmental Microbiology 55: 1761–1765.

    Google Scholar 

  • Corliss J.O. 1979. The ciliated protozoa characterization, classification and guide to literature. Oxford, New-York: Pergamon Press.

    Google Scholar 

  • Dailidienė I., Davulienė, L. 2008. Salinity trend and variation in the Baltic Sea near the Lithuanian coast and in the Curonian Lagoon in 1984–2005. Journal of Marine Systems 74: S20–S29.

    Article  Google Scholar 

  • Dale T., Burkill P.H. 1982. “Live counting” — a quick and simple technique for enumerating pelagic ciliates. Annales De L’institut Océanographique 58(S): 267–276.

    Google Scholar 

  • Ferrarin C., Razinkovas A., Gulbinskas S., Umgiesser G. and Bliūdžiutė L. 2008. Hydraulic regime-based zonation scheme of the Curonian Lagoon. Hydrobiologia 611: 133–146.

    Article  Google Scholar 

  • Foissner W. 1988. Taxonomic and nomenclatural revision of Sládecek’s list of ciliates (Protozoa: Ciliophora) as indicators of water quality. Hydrobiologia 166: 1–64.

    Article  Google Scholar 

  • Foissner W., Berger H. 1996. A user-friendly guide to the ciliates (Protozoa, Ciliophora) commonly used by hydrobiologists as bioindicators in rivers, lakes, and waste waters, with notes on their ecology. Freshwater Biology 35:375–482.

    Google Scholar 

  • Gasiūnaitė Z.R. 2000. Coupling of the Limnetic and Brackishwater Plankton Crustaceans in the Curonian Lagoon (Baltic sea). International Review of Hydrobiology (5–6): 653–661.

  • Gasiūnaitė Z.R., Daunys D., Olenin S., Razinkovas, A. 2008. The Curonian Lagoon. In U. Schiewer (ed.) Ecology of Baltic Coastal Waters. Ecological studies 197, pp. 197–215. Springer-Verlag Berlin Heidelberg.

  • Jiang J.G., Shen Y.F. 2005. Use of the aquatic protozoa to formulate a community biotic index for an urban water system. Science of the Total Environment 346: 99–111.

    Article  Google Scholar 

  • Johansson M., Gorokhova E., Larsson U. 2004. Annual variability in ciliate community structure, potential prey and predators in the open nothern Baltic Sea proper. Journal of Plankton Research 26(1): 67–80.

    Article  Google Scholar 

  • Kahl A. 1930. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 1. Allgemeiner Teil und Prostomata.Tierwelt Deutschlands.

  • Kahl A. 1931. Urtiere oder Protozoa I. Wimpertiere oder Ciliata (Infusoria) 2. Holotricha auber den im 1. Teil behandelten Prostomata. Tierwelt Deutschlands.

  • Kahl A. 1932. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 3. Spirotricha. Tierwelt Deutschlands.

  • Kahl A. 1935. Urtiere oder Protozoa I: Wimpertiere oder Ciliata (Infusoria) 4. Peritricha und Chonotricha. Tierwelt Deutschlands.

  • Kiss A.K., Ács E., Kiss K.T., Török, J.K. 2009. Structure and seasonal dynamics of the protozoan community (heterotrophic flagellates, ciliates, amoeboid protozoa) in the plankton of a large river (River Danube, Hungary). European Journal of Protistology 45: 121–138.

    Article  Google Scholar 

  • Kivi K., Setala O. 1995. Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Marine Ecology Progress Series 119: 125–137.

    Article  Google Scholar 

  • Krebs C.J. 1989. Ecological methodology. Harper and Row, New York.

    Google Scholar 

  • Lair N., Jacquet V., Reyes-Marchant P. 1999. Factors related to autotrophic potamoplankton, heterotrophic protists and micrometazoan abundance, at two sites in a lowland temperate river. Hydrobiologia 394: 13–28.

    Article  Google Scholar 

  • Leakey R.J.G., Burkill P.H., Sleigh M.A. 1994. A comparison of fixatives for the estimation of abundance and biovolume of marine marine planktonic ciliate populations. Journal of Plankton Research 16: 375–389.

    Article  Google Scholar 

  • Madoni P., Zangrossi S. 2005. Ciliated protozoa and saprobical evaluation of water quality in the Taro River (northern Italy). Italian Journal of Zoology 72: 21–25.

    Article  Google Scholar 

  • Mažeikaitė S.I. 1978 a. Zooplankton of the nothern part of the Curonian Lagoon in 1974 and 1975. Academy of Science of Lithuanian SSR 64: 55–56 (in Russian).

    Google Scholar 

  • Mažeikaitė S.I. 1978 b. Zooplankton species composition, abundance and biomass in the nothern part of the Curonian lagoon under antropogenic polution. In: Baranauskienė, A., Budrienė S., Dubauskienė-Duž R., Malamienė B., Petrauskas B., Raziulytė R., Jankevičius K., Jankevičiūtė G. (eds.) Psysiologo-biochemical conditions of the development of plankton organisms in the nothern part of the Curonian Lagoon. Vilnius. 87–111. (in Russian).

  • Mažeikaitė S. 2003. Freshwater plankton heterotrophic protists of Lithuania. Vilnius: Press of the Botany institute (in Lithuanian).

    Google Scholar 

  • Mironova E.I., Telesh I.V., Skarlato S.O. 2009. Planktonic ciliates of the Baltic Sea. Inland Water Biololy 2:13–24.

    Google Scholar 

  • Nielsen T.G., Kiorboe, T. 1994. Regulation of zooplankton biomass and production in a temperate, coastal ecosystem. 2. Ciliates. Limnology and Oceanography 39: 508–519.

    Article  Google Scholar 

  • Obolkina L.A. 2006. Planktonic ciliates of Lake Baikal. Hydrobiologia 586(S): 193–199.

    Article  Google Scholar 

  • Pfister G., Auer B., Arndt H. 2002. Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes-a community analysis at the species level. Limnologica 32: 147–168.

    Article  Google Scholar 

  • Pfister G., Sonntang B., Posch T. 1999. Comparison of a direct live count and an improved quatitative protargol stain (QPS) in determining abundance and cell volumes of pelagic freshwater protozoa. Aquatic Microbial Ecology 18: 95–103.

    Article  Google Scholar 

  • Porter K.G., Sherr E.B., Sherr B.F., Pace M., Sanders R.W. 1985. Protozoa in planktonic food webs. Journal Protozoology 32: 409–415.

    Google Scholar 

  • Pustelnikovas O. 1998. Geochemistry of sediments of the Curonian Lagoon (Baltic Sea). Vilnius.

  • Samuelsson K., Berglund J., Andersson A. 2006. Factors structuring the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. Journal of Plankton Research 28: 345–359.

    Article  Google Scholar 

  • Scherwass A., Arndt H. 2005. Structure, dynamics and control of the ciliate fauna in the potamoplankton of the River Rhine. Archiv für Hydrobiologie 164(3): 287–307.

    Article  Google Scholar 

  • Schmiidt-Ries H. 1940. Untersuchungen zur Kenntnis des Pelagials eines Strandgewassers. Zeitschrift fur Fischerei 36(2): 213–291.

    Google Scholar 

  • Setälä O., Kiwi K. 2003. Planktonic ciliates in the Baltic Sea in summer: distribution, species association and estimated grazing impact. Aquatic Microbial Ecology 32: 287–297.

    Article  Google Scholar 

  • Sherr E.B., Sherr B.F., Fallon R.D., Newell S.Y. 1986. Small, aloricate ciliates as a major component of the marine heterotrophic nanaoplankton. Limnology and Oceanography 31(1): 177–183.

    Article  Google Scholar 

  • Šimek K., Armengol J., Comerma M., Garcia J.-C., Chrzanowski T.H., Macek M., Nedoma J., Straskrabova V. 1998. Charactristics of protistan control of bacterial production in three reservoirs of different trophy. International Review of Hydrobiology 83:485–494.

    Google Scholar 

  • Sime-Ngando T., Hartmann H.J., Groliere C.A. 1990. Rapid quantification of plankton ciliates: comparison of improved live counting with other methods. Applied and Environmental Microbiology 56(7): 2234–2242.

    Google Scholar 

  • Small E.B., Lynn D.H. 1985. Phylum Ciliophora Doflein, 1901. In Lee, J.J., Hutner, S.H. and Bovee, E.D. (eds.). An Illustrated Guide to the Protozoa. Soc. Protozool. Special Publ., Allen Press, Lawrence, Kansas. pp. 393–575.

    Google Scholar 

  • Smetacek V. 1981. The annual cycle of protozooplankton in the Kiel Bight. Marine Biology 63: 1–11.

    Article  Google Scholar 

  • Stoecker D.K., Evans G.T. 1985. Effects of protozoan herbivory and carnivory in a microplankton food web. Marine Ecology Progress Series 25: 159–167.

    Article  Google Scholar 

  • Stoecker D.K., Gifford D.J., Putt, M. 1994. Preservation of marine planktonic ciliates: losses and cell shrinkage during fixation. Marine Ecology Progress Series 110: 293–299.

    Article  Google Scholar 

  • Stossel F. 1979: Ciliates as bioindicators in Swiss streams. EAWAG News 10: 7–10.

    Google Scholar 

  • Telesh I., Postel L., Heerkloss R., Mironova E., Skarlato S. 2009. Zooplankton of the Open Baltic Sea: Extended Atlas. BMB Publication No. 21 — Meereswiss. Ber., Warnemünde, 76, 1–290.

    Google Scholar 

  • Telesh I.V., Schubert H., Skarlato S.O. 2011. Revisiting Remane’s concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Marine Ecology Progress Series 412: 1–11.

    Article  Google Scholar 

  • Uitto A., Heiskanen A.S., Lignell R., Autio R., Pajuniemi R. 1997. Summer dynamics of the coastal planktonic food web in the northern Baltic Sea. Marine Ecology Progress Series 151: 27–41.

    Article  Google Scholar 

  • Utermöhl H. 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen / Int. Verein. Theor. Angew. Limnol., 9: 1–38.

    Google Scholar 

  • Weisse T., Müller H., Pinto-Coelho R.M., Schweize, A., Springmann D., Baldinger G. 1990. Response of microbial loop to the phytoplankton spring blogom in a large prealpine lake. Limnology and Oceannography 35: 781–794.

    Article  Google Scholar 

  • Wiackowski K., 1981. Analysis of Ciliata from polluted sector of the River Drwinka on the basis of binary data. Acta Hydrobiology 23(4): 319–329.

    Google Scholar 

  • Witek M. 1998. Annual changes of abundance and biomass of planktonic ciliates in the Gdansk Basin, southern Baltic. International Review of Hydrobiology 83: 162–182.

    Article  Google Scholar 

  • Xu R., Cronberg G. 2010. Planktonic ciliates in Western Basin of Lake Ringsjön, Sweden: community ctructure, seasonal dynamics and long-term changes. Protistology 6(3): 173–187.

    Google Scholar 

  • Žaromskis R., 1996. Oceans, Seas, Estuaries. Vilnius: Debesija (in Lithuanian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evelina Grinienė.

About this article

Cite this article

Grinienė, E., Mažeikaitė, S. & Gasiūnaitė, Z.R. Inventory of the taxonomical composition of the plankton ciliates in the Curonian Lagoon (SE Baltic Sea). Ocean and Hydro 40, 86–95 (2011). https://doi.org/10.2478/s13545-011-0045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13545-011-0045-0

Key words

Navigation