Skip to main content
Log in

Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In the present manuscript we analyze non-linear multi-order fractional differential equation

$$L\left( D \right)u\left( t \right) = f\left( {t,u\left( t \right)} \right), t \in \left[ {0,T} \right], T > 0,$$

where

$$L\left( D \right) = \lambda _n ^c D^{\alpha _n } + \lambda _{n - 1} ^c D^{\alpha _{n - 1} } + \cdots + \lambda _1 ^c D^{\alpha _1 } + \lambda _0 ^c D^{\alpha _0 } ,\lambda _i \in \mathbb{R}\left( {i = 0,1, \cdots ,n} \right),\lambda _n \ne 0, 0 \leqslant \alpha _0 < \alpha _1 < \cdots < \alpha _{n - 1} < \alpha _n < 1,$$

and c D α denotes the Caputo fractional derivative of order α. We find the Greens functions for this equation corresponding to periodic/anti-periodic boundary conditions in terms of the two-parametric functions of Mittag-Leffler type. Further we prove existence and uniqueness theorems for these fractional boundary value problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 451–462; DOI: 10.2478/s13540-012-0032-1; http://link.springer.com/article/10.2478/s13540-012-0032-1.

    MATH  MathSciNet  Google Scholar 

  2. D. Baleanu, H. Mohammad, S. Rezapour, On a nonlinear fractional differential equation on partially ordered metric spaces. Adv. Difference Equ. 2013 (2013), ID # 83 (10 p.); DOI: 10.1186/1687-1847-2013-83; http://link.springer.com/article/10.1186/1687-1847-2013-83.

  3. E. Bazhlekova, Properties of the fundamental and the impulse response solutions of multi-term fractional differential equations. In: Complex Analysis and Applications’ 13 (Proc. Intern. Conference), Sofia, 31 Oct.–2 Nov. 2013, Inst. Math. Inform.-Bulg. Acad. Sci. (2013), 55–54; at http://www.math.bas.bg/complan/caa13/.

    Google Scholar 

  4. M. Belmekki, J. Nieto, R. López, Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl. 2009 (2009), ID # 324561 (18 p.); DOI:10.1155/2009/324561; http://www.boundaryvalueproblems.com/content/2009/1/324561.

  5. M. Benchohra, F. Ouaar, Existence results for nonlinear fractional differential equations with integral boundary conditions. Bull. Math. Anal. Appl. 2, No 4 (2010), 7–15.

    MathSciNet  Google Scholar 

  6. V. Daftardar-Gejji, H. Jafari, Analysis of a system of non-autonomous fractional differential equations involving Caputo derivatives. J. Math. Anal. Appl. 328 (2007), 1026–1033.

    Article  MATH  MathSciNet  Google Scholar 

  7. V. Daftardar-Gejji, S. Bhalekar, Boundary value problems for multiterm fractional differential equations. J. Math. Anal. Appl. 345 (2008), 754–765.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Daftardar-Gejji (Ed.), Fractional Calculus: Theory and Applications. Narosa (2013).

    Google Scholar 

  9. N.J. Ford, M.L. Morgado, Fractional boundary value problems: Analysis and numerical methods. Fract. Calc. Appl. Anal. 14, No 4 (2011), 554–567; DOI: 10.2478/s13540-011-0034-4; http://link.springer.com/article/10.2478/s13540-011-0034-4.

    MATH  MathSciNet  Google Scholar 

  10. E. Kaslik and S. Sivasundaram, Non-existence of periodic solutions in fractional-order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions. Nonlinear Anal. Real World Appl. 13 (2012), 1489–1497.

    Article  MATH  MathSciNet  Google Scholar 

  11. M.A. Khamsi, W.A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory. Wiley-Interscience (2011).

    Google Scholar 

  12. Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24, No 2 (1999), 207–233.

    MATH  MathSciNet  Google Scholar 

  13. I. Podlubny, Fractional Differential Equations. Academic Press, Boston etc. (1999).

    MATH  Google Scholar 

  14. M. Stojanović, Existence-uniqueness result for a nonlinear n-term fractional equation. J. Math. Anal. Appl. 353 (2009), 244–255.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Wang, Z. Liu, Anti-periodic fractional boundary value problems for nonlinear differential equations of fractional order. Adv. Difference Equ. 2012 (2012), ID #116 (12 p.); doi:10.1186/1687-1847-2012-116.

  16. K. Zhang, J. Xu, Unique positive solution for a fractional boundary value problem. Fract. Calc. Appl. Anal. 16, No 4 (2013), 937–948; DOI: 10.2478/s13540-013-0057-0; http://link.springer.com/article/10.2478/s13540-013-0057-0.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangita Choudhary.

About this article

Cite this article

Choudhary, S., Daftardar-Gejji, V. Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions. fcaa 17, 333–347 (2014). https://doi.org/10.2478/s13540-014-0172-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-014-0172-6

MSC 2010

Key Words and Phrases

Navigation