Skip to main content
Log in

The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We analyze the “fractional continuum limit” and its generalization to n dimensions of a self-similar discrete spring model which we introduced recently [21]. Application of Hamilton’s (variational) principle determines in rigorous manner a self-similar and as consequence non-local Laplacian operator. In the fractional continuum limit the discrete self-similar Laplacian takes the form of the fractional Laplacian \( - ( - \Delta )^{\tfrac{\alpha } {2}} \) with 0 < α < 2. We analyze the fundamental link of fractal vibrational features of the discrete self-similar spring model and the smooth regular ones of the corresponding fractional continuum limit model in n dimensions: We find a characteristic scaling law for the density of normal modes ∼ \(\omega ^{\tfrac{{2n}} {\alpha } - 1} \) with a positive exponent \(\tfrac{{2n}} {\alpha } - 1 > n - 1 \) being always greater than n−1 characterizing a regular lattice with local interparticle interactions. Furthermore, we study in this setting anomalous diffusion generated by this Laplacian which is the source of Lévi flights in n-dimensions. In the limit of “large scaled times” ∼ t/r α >> 1 we show that all distributions exhibit the same asymptotically algebraic decay ∼ t -n → 0 independent from the initial distribution and spatial position. This universal scaling depends only on the ratio n/α of the dimension n of the physical space and the Lévi parameter α.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, N. York (1972); Chapter 6.

    MATH  Google Scholar 

  2. R.M. Blumenthal, R.K. Getoor and D.B. Ray, On the distribution of first hits for the symmetric stable processes. Trans. American Math. Society 99, No 3 (1961), 540–554.

    MathSciNet  MATH  Google Scholar 

  3. D. Brockmann and L. Hufnagel, Front propagation in reaction-superdiffusion dynamics: Taming Levy flights with fluctuations. Phys. Review Letters 98 (2007), 178301.

    Article  Google Scholar 

  4. W. Chen, A new definition of the fractional Laplacian. arXiv:cs/0209020 (2002); http://arxiv.org/abs/cs/0209020.

    Google Scholar 

  5. W. Chen, S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. of the Acoustical Soc. of America 114, No 5 (2004), 1424–1430.

    Article  Google Scholar 

  6. Z.Q. Chen, P. Kim, R. Song, Heat kernel estimates for Dirichlet fractional Laplacian. J. of the European Math. Society 12 (2010), 1307–1329.

    Article  MathSciNet  MATH  Google Scholar 

  7. A.C. Eringen, Nonlocal Continuum Field Theories. Springer, N. York — Berlin — Heidelberg (2001), ISBN 0-387-95275-6.

    Google Scholar 

  8. W.G. Glöckle,, T.F. Nonnenmacher, A fractional calculus approach to self similar protein dynamics. Biophysical Journal 68 (1995), 46–53.

    Article  Google Scholar 

  9. H. Goldstein (1980), Classical Mechanics. Second Ed., Addition Wesley (1980), 35–69.

    MATH  Google Scholar 

  10. A. Hanyga, Multi-dimensional solutions of space-time fractional diffusion equations. Proc. of the Royal Society A 458, No 2018 (2002), 429–450.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Hurst, J.C. Vassilicos, Scalings and decay of fractal-generated turbulence. Physics of Fluids 19 (2007), 035103.

    Article  Google Scholar 

  12. N. Laskin, Fractals and quantum mechanics. Chaos 10, No 4 (2002).

    Google Scholar 

  13. N. Laskin, Fractional Schrodinger equation. Physical Review E 66 (2002), 056108.

    Article  MathSciNet  Google Scholar 

  14. F. Lenz, T.C. Ings, L. Chittka, A.V. Chechkin, R. Klages, Spatiotemporal dynamics of bumblebees foraging under predation risk. Physical Rev. Letters 108 (2012), 098103.

    Article  Google Scholar 

  15. P. Lévi, Processus stochastiques et mouvement Brownien. Reprint, Editions Jacques Gabay (1965).

    Google Scholar 

  16. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics. Course of Theoretical Physics 10 (Third edition). Pergamon (1981), ISBN 0-08-026480-8.

  17. G. Lu, J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian. Nonlinear Analysis 75 (2012), 3036–3048.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Mandelbrot, The Fractal Geometry of Nature. W. Freeman & Co (1982), ISBN 0-716-71186-9.

    MATH  Google Scholar 

  19. B. Mandelbrot Fractales, hasard et finance. Champs sciences (1997), ISBN 978-2-0812-2510-7.

    Book  Google Scholar 

  20. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Physics Reports 339 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  21. T.M. Michelitsch, G.A. Maugin, F.C.G.A. Nicolleau, A.F. Nowakowski, S. Derogar, Dispersion relations and wave operators in self-similar quasicontinuous linear chains. Physical Rev. E 80 (2009), 011135.

    Article  MathSciNet  Google Scholar 

  22. T.M. Michelitsch, The self-similar field and its application to a diffusion problem. J. of Physics A: Mathematical and Theoretical 44 (2011), 465206.

    Article  Google Scholar 

  23. T.M. Michelitsch, G.A. Maugin, F.C.G.A. Nicolleau, S. Derogar, Wave propagation in quasi-continuous linear chains with self-similar harmonic interactions: Towards a fractal mechnics. In: Mechanics of Generalized Continua, Advanced Structured Materials, 7, H. Altenbach, G.A. Maugin, V. Erofeev (Eds.), Springer, Berlin — Heidelberg (2011), 231–244.

    Article  MathSciNet  Google Scholar 

  24. T.M. Michelitsch, G.A. Maugin, M. Rahman, S. Derogar, A.F. Nowakowski, F.C.G.A. Nicolleau, A continuum theory for one-dimensional self-similar elasticity and applications to wave propagation and diffusion. European J. of Applied Mathematics 23 (2012), 709–735.

    Article  MathSciNet  MATH  Google Scholar 

  25. T.M. Michelitsch, G.A. Maugin, M. Rahman, S. Derogar, A.F. Nowakowski, F.C.G.A. Nicolleau, An approach to generalized one-dimensional self-similar elasticity. International J. of Engineering Science 61 (2012), 103–111.

    Article  MathSciNet  Google Scholar 

  26. F.C.G.A. Nicolleau, C. Cambon, J.-M. Redondo, J.C. Vassilicos, M. Reeks and A.F. Nowakowski (Eds.), New Approaches in Modelling Multiphase Flows and Dispersion in Turbulence, Fractal Methods and Synthetic Turbulence. Springer Science, Ercoftac Series 18 (2011), ISBN 978-94-007-2505-8.

    Google Scholar 

  27. F.C.G.A. Nicolleau, S.M. Salim, A.F. Nowakowski, Experimental study of a turbulent pipe flow through a fractal plate. J. of Turbulence 12, No 44 (2011), 1–20.

    Google Scholar 

  28. R.R. Nigmatullin, D. Baleanu, The derivation of the generalized functional equations describeing self-similar processes. Fract. Calc. Appl. Anal. 15, No 4 (2012), 718–740; DOI; 10.2478/s13540-012-0049-5; http://link.springer.com/article/10.2478/s13540-012-0049-5.

    MathSciNet  Google Scholar 

  29. M.D. Ortiguera, Riesz potential operations and inverses via fractional centred derivatives. International J. of Math. and Mathematical Sci.2006 (2006), 48391.

    Google Scholar 

  30. H.O. Peitgen, H. Jürgens, D. Saupe, Fractals for the Classroom: Part 1: Introduction to Fractals and Chaos. Springer (1991), ISBN-10: 9780387970417.

    Google Scholar 

  31. M. Putinar, A renormalized Riesz potential and applications. Advances in Constructive Approximation, Vanderbilt 2003, Mod. Methods Math., Nashboro Press, Brentwood, TN (2004), 433–465.

    Google Scholar 

  32. H. Qing, L. Fanghua, Elliptic Partial Differential Equations. Courant Institute of Mathematical Sciences, N. York (1997), ISBN 0-9658703-0-8.

    Google Scholar 

  33. W. Reichel, Characterization of balls by Riesz-potentials. Annali di Matematica Pura et Applicata 188, No 2 (2009), 235–245.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Riesz, L’intégrale de Riemann-Liouville et le problème de Cauchy. Acta Mathematica 81, No 1 (1949), 1–222.

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Samko, A. Kilbas and O. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, London etc. (1993).

    MATH  Google Scholar 

  36. R.E. Seoud, J.C. Vassilicos, Dissipation and decay of fractal-generated turbulence. Phys. Fluids 19, No 10 (2007), 105–108.

    Article  Google Scholar 

  37. D. Sornette, Discrete scale invariance and complex dimensions. Physics Reports 297 (1998), 239–270.

    Article  MathSciNet  Google Scholar 

  38. N. Stollenwerk, J.P. Boto, Fractional calculus and Levy flights: modelling spatial epidemic spreading. Proc. 9th Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2009, J.V. Aguiar et al. (Eds.), Salamanca (2009), 177–188.

    Google Scholar 

  39. H.G. Sun, W. Chen, C. Li, Y.Q. Chen, Fractional differential models for anomalous diffusion. Physica A 389 (2010), 2719–2724.

    Article  Google Scholar 

  40. J.L. Vazquez, Nonlinear Diffusion with Fractional Laplacian Operators: Nonlinear Partial Differential Equations: the Abel Symposium 2010, Holden, Helge & Karlsen, Kenneth H. (Eds.), Springer (2012), 271–298.

Download references

Author information

Authors and Affiliations

Authors

Additional information

We dedicate this paper to the memory of our dear friend (and co-author of T.M.M), Professor Arne Wunderlin (University of Stuttgart, Germany)

About this article

Cite this article

Michelitsch, T.M., Maugin, G.A., Nowakowski, A.F. et al. The fractional Laplacian as a limiting case of a self-similar spring model and applications to n-dimensional anomalous diffusion. fcaa 16, 827–859 (2013). https://doi.org/10.2478/s13540-013-0052-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0052-5

MSC 2010

Keywords and phrases

Navigation