Skip to main content
Log in

Two equivalent Stefan’s problems for the time fractional diffusion equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Two Stefan’s problems for the diffusion fractional equation are solved, where the fractional derivative of order α ∈ (0, 1) is taken in the Caputo sense. The first one has a constant condition on x = 0 and the second presents a flux condition T x (0,t) = q/t α/2. An equivalence between these problems is proved and the convergence to the classical solutions is analyzed when α ↗ 1 recovering the heat equation with its respective Stefan’s condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Cannon, The One-Dimensional Heat Equation. Cambridge University Press, Cambridge (1984).

    Book  MATH  Google Scholar 

  2. M. Caputo, Linear models of dissipation whose q is almost frequency independent: II. Geophys. J.R. Astr. Soc. 13, No 5 (1967), 529–539; http://www.blackwell-synergy.com/toc/gji/13/5; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3–14.

    Article  Google Scholar 

  3. A. Datzeff, Sur le problème linéaire de Stefan. Mémoires de sciences physiques, Fasc. 69, Gauthier-Villars, Paris (1970).

    Google Scholar 

  4. R. Gorenflo, Y. Luchko, F. Mainardi, Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. 2, No 4 (1999), 383–414.

    MathSciNet  MATH  Google Scholar 

  5. A. Kilbas, H. Srivastava, J. Trujillo, Theory and Applications of Fractional Differential Equations, Vol. 204 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2006).

    Book  MATH  Google Scholar 

  6. J. Liu and M. Xu, Some exact solutions to Stefan problems with fractional differential equations. J. Math. Anal. Appl. 351 (2009), 536–542.

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity. Imperial Collage Press, London (2010).

    Book  Google Scholar 

  8. F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of the space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 4, No 2 (2001), 153–192.

    MathSciNet  MATH  Google Scholar 

  9. I. Podlubny, Fractional Differential Equations, Vol. 198 of Mathematics in Science and Engineering. Academic Press, San Diego — CA (1999).

    Google Scholar 

  10. B. Stankovic, On the function of E. M. Wright. Publications de l’Institut Mathématique, Nouvelle série 10, No 24 (1970), 113–124.

    MathSciNet  Google Scholar 

  11. D. Tarzia, An inequality for the coeficient σ of the free boundary s(t) = 2σ \(\sqrt t \) of the Neumann solution for the two-phase Stefan problem. Quart. Appl. Math. 39 (1981), 491–497.

    MathSciNet  Google Scholar 

  12. D. Tarzia, A bibliography on moving free boundary problems for the heat-diffusion equation. The Stefan and related problems. MATSerie A 2 (2000) (with 5869 titles on the subject, 300 pages); http://fbpnews.org/forum/msg/45/Tarzia-MAT-SerieA-2(2000).pdf

  13. E.M. Wright, The generalized Bessel function of order greater than one. Quart. J. Math., Oxford Ser. 11 (1940), 36–48.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Santillan Marcus.

About this article

Cite this article

Roscani, S., Marcus, E.S. Two equivalent Stefan’s problems for the time fractional diffusion equation. fcaa 16, 802–815 (2013). https://doi.org/10.2478/s13540-013-0050-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0050-7

MSC 2010

Key Words and Phrases

Navigation