Skip to main content
Log in

Controllability of fractional order system with nonlinear term having integral contractor

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, controllability results for a class of semilinear control systems of fractional order are established. The nonlinear term is assumed to have an integral contractor which is a weaker condition than the Lipschitz continuity. The existence and uniqueness of mild solution is also proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aghajani, Y. Jalilian, J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15,No 1 (2012), 44–69; DOI: 10.2478/s13540-012-0005-4; http://link.springer.com/article/10.2478/s13540-012-0005-4.

    MathSciNet  MATH  Google Scholar 

  2. H.M. Ahmed, Controllability of fractional stochastic delay equations. Lobachevskii Journal of Mathematics 30, No 3 (2009), 195–202.

    Article  MathSciNet  MATH  Google Scholar 

  3. H.M. Ahmed, Boundary controllability of nonlinear fractional integrodifferential systems. Advances in Difference Equations 2010 (2010), Article ID 279493.

  4. M. Altman, Contractors and Contractor Directions, Theory and Application. Marcel Dekker, New York (1978).

    Google Scholar 

  5. E. Bazhlekova, Existence and uniqueness results for a fractional evolution equation in Hilbert space. Fract. Calc. Appl. Anal. 15, No 2 (2012), 232–243; DOI: 10.2478/s13540-012-0017-0; http://link.springer.com/article/10.2478/s13540-012-0017-0.

    MathSciNet  MATH  Google Scholar 

  6. Y. Chalco-Cano, J.J. Nieto, A. Ouahab, H.R. Flores, Solution set for fractional differential equations with Riemann-Liouville derivative. Fract. Calc. Appl. Anal. 16, No 3 (2013), 682–694; DOI: 10.2478/s13540-013-0043-6; http://link.springer.com/article/10.2478/s13540-013-0043-6.

    MathSciNet  Google Scholar 

  7. Shantanu Das, Functional Fractional Calculus. Springer-Verlag, Berlin, Heidelberg (2011).

    Book  MATH  Google Scholar 

  8. A. Debbouche, D. Baleanu, Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Computers and Mathematics with Applications 62 (2011), 1442–1450.

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, Vol. 3. McGraw-Hill, New York (1955).

    Google Scholar 

  10. A.D. Fitt, A.R.H. Goodwin, W.A. Wakeham, A fractional differential equation for a MEMS viscometer used in the oil industry. J. Comput. Appl. Math. 229 (2009), 373–381.

    Article  MathSciNet  MATH  Google Scholar 

  11. R.K. George, Approximate controllability of semilinear systems using integral contractors. Numerical Functional Analysis and Optimization 16 (1995), 127–138.

    Article  MathSciNet  MATH  Google Scholar 

  12. R.K. George, D.N. Chalishajar, A.K. Nandakumaran, Exact controllability of the nonlinear third-order dispersion equation. J. Math. Anal. Appl. 332 (2007), 1028–1044.

    Article  MathSciNet  MATH  Google Scholar 

  13. W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach of self-similar protein dynamics. Biophys. J. 68 (1995), 46–53.

    Article  Google Scholar 

  14. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    Book  MATH  Google Scholar 

  15. M. Jovanović, S. Janković, On stochastic integrodifferential equations via non-linear integral contractors I, Filomat 23, No 3 (2009), 167–180.

    Article  MATH  Google Scholar 

  16. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  17. K. Li, J. Peng, J. Gao, Existence results for semilinear fractional differential equations via Kuratowski measure of noncompactness. Fract. Calc. Appl. Anal. 15, No 4 (2012), 591–610; DOI: 10.2478/s13540-012-0041-0; http://link.springer.com/article/10.2478/s13540-012-0041-0.

    MathSciNet  Google Scholar 

  18. A. Obeidat, M. Gharaibeh, M. Al-Ali, A. Rousan, Evolution of a current in a resistor. Fract. Calc. Appl. Anal. 14, No 2 (2011), 247–259; DOI: 10.2478/s13540-011-0015-7; http://link.springer.com/article/10.2478/s13540-011-0015-7.

    MathSciNet  Google Scholar 

  19. K.B. Oldham, J. Spanier, The Fractional Calculus, Theory and Applications of Differentiation and Integration to Arbitrary Order. Academic Press, New York — London (1974).

    MATH  Google Scholar 

  20. J. Sabatier, O.P. Agrawal, J.A. Tenreiro Machado, Advances in Fractional Calculus. Springer, The Netherlands (2007).

    Book  MATH  Google Scholar 

  21. Z. Tai, X. Wang, Controllability of fractional-order impulsive neutral functional infinite delay integrodifferential systems in Banach spaces. Applied Mathematics Letters 22 (2009), 1760–1765.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Triggiani, A note on the lack of exact controllability for mild solutions in Banach spaces. SIAM J. Control Optim. 15 (1977), 407–411.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Turo, Study of first order stochastic partial differential equations using integral contractors. Applicable Analysis 70 (1998), 281–291.

    Article  MathSciNet  Google Scholar 

  24. Z. Yan, Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. Journal of the Franklin Institute 348 (2011), 2156–2173.

    Article  MATH  Google Scholar 

  25. Y. Zhou, F. Jiao, Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59 (2010), 1063–1077.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surendra Kumar.

About this article

Cite this article

Kumar, S., Sukavanam, N. Controllability of fractional order system with nonlinear term having integral contractor. fcaa 16, 791–801 (2013). https://doi.org/10.2478/s13540-013-0049-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0049-0

MSC 2010

Key Words and Phrases

Navigation