Skip to main content
Log in

Velocity and displacement correlation functions for fractional generalized Langevin equations

  • Survey Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

We study analytically a generalized fractional Langevin equation. General formulas for calculation of variances and the mean square displacement are derived. Cases with a three parameter Mittag-Leffler frictional memory kernel are considered. Exact results in terms of the Mittag-Leffler type functions for the relaxation functions, average velocity and average particle displacement are obtained. The mean square displacement and variances are investigated analytically. Asymptotic behaviors of the particle in the short and long time limit are found. The model considered in this paper may be used for modeling anomalous diffusive processes in complex media including phenomena similar to single file diffusion or possible generalizations thereof. We show the importance of the initial conditions on the anomalous diffusive behavior of the particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-D. Bao, Y.-L. Song, Q. Ji and Y.-Z. Zhuo, Harmonic velocity noise: non-Markovian features of noise-driven systems at long times. Phys. Rev. E 72 (2005), 011113/1–011113/7.

    Google Scholar 

  2. S. Burov and E. Barkai, Fractional Langevin equation: Overdamped, underdamped, and critical behaviors. Phys. Rev. E 78 (2008), 031112/1–031112/18.

    Article  MathSciNet  Google Scholar 

  3. S. Burov, J.-H. Jeon, R. Metzler and E. Barkai, Single particle tracking in systems showing anomalous diffusion: The role of weak ergodicity breaking. Phys. Chem. Chem. Phys. 13 (2011), 1800–1812.

    Article  Google Scholar 

  4. S. Burov, R. Metzler and E. Barkai, Aging and nonergodicity beyond the Khinchin theorem. Proc. Natl. Acad. Sci. USA 107 (2010), 13228–13233.

    Article  MathSciNet  MATH  Google Scholar 

  5. R.F. Camargo, A.O. Chiacchio, R. Charnet and E. Capelas de Oliveira, Solution of the fractional Langevin equation and the Mittag-Leffler functions. J. Math. Phys. 50 (2009), 063507/1–063507/8.

    MathSciNet  Google Scholar 

  6. R.F. Camargo, E. Capelas de Oliveira and J. Vaz Jr, On anomalous diffusion and the fractional generalized Langevin equation for a harmonic oscillator. J. Math. Phys. 50 (2009), 123518/1–123518/13.

    MathSciNet  Google Scholar 

  7. E. Capelas de Oliveira, F. Mainardi and J. Vaz Jr., Models based on Mittag-Leffler functions for anomalous relaxation in dielectrics. Eur. Phys. J., Special Topics 193 (2011), 161–171.

    Article  Google Scholar 

  8. M. Caputo, Elasticità e Dissipazione. Zanichelli, Bologna (1969).

    Google Scholar 

  9. W. Deng and E. Barkai, Ergodic properties of fractional Brownian-Langevin motion. Phys. Rev. E 79 (2009), 011112/1–011112/7.

    MathSciNet  Google Scholar 

  10. M.A. Despósito and A.D. Viñales, Subdiffusive behavior in a trapping potential: Mean square displacement and velocity autocorrelation function. Phys. Rev. E 80 (2009), 021111/1–021111/7.

    Article  Google Scholar 

  11. J.L.A. Dubbeldam, V.G. Rostiashvili, A. Milchev and T.A. Vilgis, Fractional Brownian motion approach to polymer translocation: The governing equation of motion. Phys. Rev. E 83 (2011), 011802/1–011802/8.

    Article  Google Scholar 

  12. C.H. Eab and S.C. Lim, Fractional generalized Langevin equation approach to single-file diffusion. Physica A 389 (2010) 2510–2521.

    Article  Google Scholar 

  13. C.H. Eab and S.C. Lim, Fractional Langevin equations of distributed order. Phys. Rev. E 83 (2011), 031136/1–031136/10.

    Article  MathSciNet  Google Scholar 

  14. C.H. Eab and S.C. Lim, Accelerating and retarding anomalous diffusion. J. Phys. A: Math. Theor. 45 (2012), 145001/1–145001/17.

    Article  Google Scholar 

  15. K.S. Fa, Generalized Langevin equation with fractional derivative and long-time correlation function. Phys. Rev. E 73 (2006), 061104/1–061104/4.

    Article  Google Scholar 

  16. K.S. Fa and J. Fat, Continuous-time random walk: exact solutions for the probability density function and first two moments. Phys. Scr. 84 (2011), 045022/1–045022/6.

    Google Scholar 

  17. I. Golding and E.C. Cox, Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96 (2006), 098102/1–098102/4.

    Article  Google Scholar 

  18. R. Gorenflo and F. Mainardi, Random walk models for Space-Fractional Diffusion Processes. Fract. Calc. Appl. Anal. 1, No 2 (1998), 167–192; http://www.math.bas.bg/!fcaa

    MathSciNet  MATH  Google Scholar 

  19. R. Gorenflo and F. Mainardi, Simply and multiply scaled diffusion limits for continuous time random walks. Journal of Physics: Conference Series 7 (2005), 1–16.

    Article  Google Scholar 

  20. I. Goychuk, Viscoelastic subdiffusion: From anomalous to normal. Phys. Rev. E 80 (2009), 046125/1–046125/11.

    Article  Google Scholar 

  21. Y. He, S. Burov, R. Metzler and E. Barkai, Random time-scale invariant diffusion and transport coefficients. Phys. Rev. Lett. 101 (2008), 058101/1–058101/4.

    Google Scholar 

  22. R. Hilfer, Applications of Fractional Calculus in Physics. World Scientific Publ. Co., Singapore (2000).

    Book  MATH  Google Scholar 

  23. R. Hilfer, On fractional diffusion and continuous time random walks. Physica A 329 (2003), 35–40.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.-H. Jeon and R. Metzler, Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries. Phys. Rev. E 81 (2010), 021103/1–021103/11.

    Article  MathSciNet  Google Scholar 

  25. J.-H. Jeon, V. Tejedor, S. Burov, E. Barkai, C. Selhuber-Unkel, K. Berg-Sorensen, L. Oddershede and R. Metzler, In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106 (2011), 048103/1–048103/4; http://arxiv.org/abs/1010.0347

    Article  Google Scholar 

  26. S.C. Kou and X.S. Xie, Generalized Langevin equation with fractional Gaussian noise: Subdiffusion within a single protein molecule. Phys. Rev. Lett. 93 (2004), 180603/1–180603/4.

    Article  Google Scholar 

  27. R. Kubo, The fluctuation-dissipation theorem. Rep. Prog. Phys. 29 (1966), 255–284.

    Article  Google Scholar 

  28. S.C. Lim and L.P. Teo, Modeling single-file diffusion with step fractional Brownian motion and a generalized fractional Langevin equation. J. Stat. Mech. P08015 (2009).

  29. E. Lutz, Fractional Langevin equation. Phys. Rev. E 64 (2001), 051106/1–051106/4.

    Article  Google Scholar 

  30. F. Mainardi and P. Pironi, The fractional Langevin equation: Brownian motion revisited. Extr. Math. 11 (1996), 140–154.

    MathSciNet  Google Scholar 

  31. F. Mainardi, Fractional Calculus: Some basic problems in continuum and statistical mechanics. In: A. Carpinteri and F. Mainardi (Eds.), Fractals and Fractional Calculus in Continuum Mechanics, Springer-Verlag, Wien and New York (1997), 291–348.

    Google Scholar 

  32. R. Mannella, P. Grigolini and B.J. West, A dynamical approach to fractional Brownian motion. Fractals 2 (1994), 81–94.

    Article  MathSciNet  Google Scholar 

  33. R. Metzler, Generalized Chapman-Kolmogorov equation: A unifying approach to the description of anomalous transport in external fields. Phys. Rev. E 62 (2000), 6233–6245.

    Article  MathSciNet  Google Scholar 

  34. R. Metzler, E. Barkai and J. Klafter, Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82 (1999), 3563–3567.

    Article  Google Scholar 

  35. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Metzler and J. Klafter, When translocation dynamics becomes anomalous. Biophys. J. 85 (2003), 2776–2779.

    Article  Google Scholar 

  37. R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37 (2004), R161–R208.

    Article  MathSciNet  MATH  Google Scholar 

  38. I. Podlubny, Fractional Differential Equations. Acad. Press, San Diego etc (1999).

    MATH  Google Scholar 

  39. N. Pottier, Aging properties of an anomalously diffusing particule. Physica A 317 (2003), 371–382.

    Article  MATH  Google Scholar 

  40. T.R. Prabhakar, A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Math. J. 19 (1971), 7–15.

    MathSciNet  MATH  Google Scholar 

  41. T. Sandev, R. Metzler and Ž. Tomovski, Fractional diffusion equation with a generalized Riemann-Liouville time fractional derivative. J. Phys. A: Math. Theor. 44 (2011), 255203/1–255203/21.

    Article  MathSciNet  Google Scholar 

  42. T. Sandev and Ž. Tomovski, Asymptotic behavior of a harmonic oscillator driven by a generalized Mittag-Leffler noise. Phys. Scr. 82 (2010), 065001/1–065001/4.

    Article  Google Scholar 

  43. T. Sandev, Ž. Tomovski and J.L.A. Dubbeldam, Generalized Langevin equation with a three parameter Mittag-Leffler noise. Physica A 390 (2011), 3627–3636.

    Article  Google Scholar 

  44. R.K. Saxena, A.M. Mathai and H.J. Haubold, Unified fractional kinetic equation and a fractional diffusion equation. Astrophysics and Space Sciences 209 (2004), 299–310.

    Article  Google Scholar 

  45. R.K. Saxena and M. Saigo, Certain properties of fractional calculus operators associated with generalized Mittag-Leffler function. Fract. Calc. Appl. Anal. 8,No 2 (2005), 141–154; available at shttp://www.math.bas.bg/~fcaa/volume8/fcaa82/saxenasaigo82.pdf.

    MathSciNet  MATH  Google Scholar 

  46. H. Scher H and E.W. Montroll, Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12 (1975), 2455–2477.

    Article  Google Scholar 

  47. O.Y. Sliusarenko, V.Y. Gonchar, A.V. Chechkin, I.M. Sokolov, and R. Metzler, Kramers-like escape driven by fractional Gaussian noise. Phys. Rev. E 81 (2010), 041119/1–041119/14.

    Article  Google Scholar 

  48. H.M. Srivastava and Ž. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 211 (2009), 198–210.

    Article  MathSciNet  MATH  Google Scholar 

  49. A. Stanislavsky and K. Weron, Numerical scheme for calculating of the fractional two-power relaxation laws in time-domain of measurements. Computer Physics Communications 183 (2012), 320–323.

    Article  MathSciNet  Google Scholar 

  50. J. Tang J and R.A. Marcus, Diffusion-controlled electron transfer processes and power-law statistics of fluorescence intermittency of nanoparticles. Phys. Rev. Lett. 95 (2005), 107401/1–107401/4.

    Google Scholar 

  51. Ž. Tomovski, R. Hilfer and H.M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Func. 21 (2010), 797–814.

    Article  MathSciNet  MATH  Google Scholar 

  52. Ž. Tomovski, T. Sandev, R. Metzler and J. Dubbeldam, Generalized space-time fractional diffusion equation with composite fractional time derivative. Physica A 391 (2012), 2527–2542.

    Article  Google Scholar 

  53. A.D. Viñales and M.A. Despósito, Anomalous diffusion: Exact solution of the generalized Langevin equation for harmonically bounded particle. Phys. Rev. E 73 (2006), 016111/1–016111/4.

    Article  Google Scholar 

  54. A.D. Viñales and M.A. Despósito, Anomalous diffusion induced by a Mittag-Leffler correlated noise. Phys. Rev. E 75 (2007), 042102/1–042102/4.

    Article  Google Scholar 

  55. A.D. Viñales, K.G. Wang and M.A. Despósito, Anomalous diffusive behavior of a harmonic oscillator driven by a Mittag-Leffler noise. Phys. Rev. E 80 (2009), 011101/1–011101/6.

    Article  Google Scholar 

  56. K.G. Wang and M. Tokuyama, Nonequilibrium statistical description of anomalous diffusion. Physica A 265 (1999), 341–351.

    Article  Google Scholar 

  57. S.C. Weber, A.J. Spakowitz and J.A. Theriot, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104 (2010), 238102/1–238102/4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trifce Sandev.

About this article

Cite this article

Sandev, T., Metzler, R. & Tomovski, Ž. Velocity and displacement correlation functions for fractional generalized Langevin equations. fcaa 15, 426–450 (2012). https://doi.org/10.2478/s13540-012-0031-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0031-2

MSC 2010

Key Words and Phrases

Navigation