Skip to main content
Log in

Low-temperature synthesis of zeolite from perlite waste — Part II: characteristics of the products

  • Published:
Materials Science-Poland

Abstract

The paper investigates the properties of sodium zeolites synthesized using the hydrothermal method under autogenous pressure at low temperature with NaOH solutions of varying concentrations. During this modification, zeolites X, Na-P1 and hydroxysodalite were synthesized. The synthesis parameters, and thus, phase composition of resulting samples, significantly affected the specific surface area (SSA) and cation exchange capacity (CEC). SSA increased from 2.9 m2/g to a maximum of 501.2 m2/g, while CEC rose from 16 meq/100 g to a maximum of 500 meq/100 g. The best properties for use as a sorbent were obtained for perlite waste modified with 4.0 M NaOH at 70 °C or 80 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ciciszwili G.W., Andronikaszwili T.G., Kirow G.N., Filizowa Ł.D., Zeolity naturalne (in Polish), WNT, Warszawa, 1990.

    Google Scholar 

  2. Breck D.W., Zeolite Molecular Sieves, John Wiley & Sons, New York — London — Sydney — Toronto, 1974.

    Google Scholar 

  3. Christidis G.E., Papantoni H., Open Miner. J., 2 (2008), 1.

    Article  Google Scholar 

  4. Moirou A., Vaxevanidou A., Christidis G., Paspaliaris I., Clay. Clay Miner., 48/5 (2000), 563.

    Article  Google Scholar 

  5. Dyer A., Tangkawanit S., Rangsriwatananon K., Micropor. Mesopor. Mat., 75 (2004), 273.

    Article  Google Scholar 

  6. Tangkawanit S., Synthesis of zeolites from perlite and study of their ion exchange properties, Suranaree University of Technology, 2004.

    Google Scholar 

  7. Christidis G.E., Galani K., Markopoulos T., Synthesis of high added value zeolites from perlite and expanded perlite waste materials, in: Scott P.W., Bristow C.M. (Eds.), Industrial Minerals and Extractive Industry Geology, The Geological Society Publishing House, UK, 2002, p. 345.

    Google Scholar 

  8. Tangkawanit S., Rangsriwatananon K., Dyer A., Micropor. Mesopor. Mater., 79 (2005), 171.

    Article  Google Scholar 

  9. Faghihian H., Kamali M., Int. J. Environ. Pollut., 19/6 (2003), 557.

    Google Scholar 

  10. Dyer A., Ion exchange capacity, [in:] Robson H. (Ed.), Verified syntheses of zeolitic materials, Elsavier, 2011, p. 67.

    Google Scholar 

  11. Yates D.J.C., Can. J. Chem., 46 (1968), 1695.

    Article  Google Scholar 

  12. Satterfield C.N., Heterogeneous Catalysis in Practice, McGraw-Hill, New York, 1980.

    Google Scholar 

  13. Ruthven D.M., Charaacterization of zeolites by sorption capacity measurments, [in:] Robson H. (Ed.), Verified syntheses of zeolitic materials, Elsevier, 2011, p. 61.

    Google Scholar 

  14. Inglezakis V.J., Hadjiandreou K.J., Diamandis N.A., Loizidou M.D., Grigoropoulou H.P., Water Res., 35 (2001), 2161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Król.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Król, M., Morawska, J., Mozgawa, W. et al. Low-temperature synthesis of zeolite from perlite waste — Part II: characteristics of the products. Mater Sci-Pol 32, 526–532 (2014). https://doi.org/10.2478/s13536-014-0217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13536-014-0217-x

Keywords

Navigation