Skip to main content
Log in

The D e (T, t) plot: A straightforward self-diagnose tool for post-IR IRSL dating procedures

  • Published:
Geochronometria

Abstract

This study presents a new self-diagnose method for the recently developed post-IR infrared stimulated luminescence (pIRIR) dating protocols. This criterion studies the dependence of equivalent dose (D e) on measurement-temperature (T) and time (t), by applying the D e (t) analysis to the IRLS and pIRIR signals measured under different temperatures, and combines these D e (t) plots into one, so-called the D e (T, t) plot. The pattern of the D e (T, t) plot is shown to be affected by anomalous fading, partial bleaching and non-bleachable signal. A D e plateau can be achieved in the D e (T, t) plot only when the effects of these factors are insignificant. Therefore, this plot can be used as a self-diagnose tool for the validity of pIRIR results. The D e (T, t) analysis has been applied to four recently developed pIRIR protocols, using aeolian samples with different ages. The results show that this self-diagnose tool can be applied to different pIRIR protocols for validating the pIRIR dating results and evaluating the pIRIR measurement conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aitken MJ, 1985. Thermoluminescence Dating. Academic Press.

    Google Scholar 

  • Aitken MJ, 1998. An introduction to luminescence dating. Oxford University Press.

    Google Scholar 

  • An ZS, Kukla GJ, Porter SC and Xiao JL, 1991. Magnetic susceptibility evidence of monsoon variation on the loess plateau of central Chi-na during the last 130,000 years. Quaternary Research 36(1): 29–36, DOI 10.1016/0033-5894(91)90015-W.

    Article  Google Scholar 

  • Auclair M, Lamothe M and Huot S, 2003. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements 37(4–5): 487–492, DOI 10.1016/S1350-4487(03)00018-0.

    Article  Google Scholar 

  • Bailey RM, 2000. The interpretation of quartz optically stimulated luminescence equivalent dose versus time plots. Radiation Meas-urements 32(2): 129–140, DOI 10.1016/S1350-4487(99)00256-5.

    Article  Google Scholar 

  • Biswas RH, Williams MAJ, Raj R, Juyal N and Singhvi AK, 2013. Methodological studies on luminescence dating of volcanic ashes. Quaternary Geochronology 17: 14–25, DOI 10.1016/j.quageo.2013.03.004.

    Article  Google Scholar 

  • Buylaert JP, Jain M, Murray AS, Thomsen KJ, Thiel C and Sohbati R, 2012. A robust method for increasing the age range of feldspar IRSL dating. Boreas 41(3): 435–451, DOI 10.1111/j.1502-3885.2012.00248.x.

    Article  Google Scholar 

  • Buylaert JP, Murray AS, Thomsen KJ and Jain M, 2009. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements 44(5–6): 560–565, DOI 10.1016/j.radmeas.2009.02.007.

    Article  Google Scholar 

  • Buylaert JP, Thiel C, Murray AS, Vandenberghe DAG, Yi S and Lu H, 2011. IRSL and post-IR IRSL residual doses recorded in modern dust samples from the Chinese Loess Plateau. Geochronometria 38(4): 432–440, DOI 10.2478/s13386-011-0047-0.

    Article  Google Scholar 

  • Ding ZL, Derbyshire E, Yang SL, Yu ZW, Xiong SF and Liu TS, 2002. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea delta O–18 record. Paleoceanography 17(3), DOI 10.1029/2001PA000725.

    Google Scholar 

  • Fu X, Li B and Li SH, 2012a. Testing a multi-step post-IR IRSL dating method using polymineral fine grains from Chinese loess. Quater-nary Geochronology 10: 8–15, DOI 10.1016/j.quageo.2011.12.004.

    Article  Google Scholar 

  • Fu X and Li SH, 2013. A modified multi-elevated-temperature post-IR IRSL protocol for dating Holocene sediments using K-feldspar. Quaternary Geochronology 17: 44–54, DOI 10.1016/j.quageo.2013.02.004.

    Article  Google Scholar 

  • Fu X, Zhang JF and Zhou LP, 2012b. Comparison of the properties of various optically stimulated luminescence signals from potassium feldspar. Radiation Measurements 47(3): 210–218, DOI 10.1016/j.radmeas.2011.12.007.

    Article  Google Scholar 

  • Huntley DJ, Godfrey-Smith DI and Thewalt MLW, 1985. Optical dating of sediments. Nature 313: 105–107, DOI 10.1038/313105a0.

    Article  Google Scholar 

  • Huntley DJ and Hancock RGV, 2001. The Rb content of K-feldspar grains being measured in optical dating. Ancient TL 19: 43–46.

    Google Scholar 

  • Imbrie J, Haye JD, Martinson DB, McIntyre A, Mix AC, Morley JJ, Pisias NG, Prell WL and Shackleton NJ, 1984. The orbital theory of pleistocene climate: support from a revised chronology of the marine δ18O record. In: Berger A, Imbrie J, Hays G, Kukla G, Saltzman B (Eds.), Milankovitch and Climate. Reidel, Dordrecht, pp. 269–305.

    Google Scholar 

  • Kars RH, Busschers FS and Wallinga J, 2012. Validating post IR-IRSL dating on K-feldspars through comparison with quartz OSL ages. Quaternary Geochronology 12: 74–86, DOI 10.1016/j.quageo.2012.05.001.

    Article  Google Scholar 

  • Lai ZP, 2010. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. Journal of Asian Earth Sciences 37(2): 176–185, DOI 10.1016/j.jseaes.2009.08.003.

    Article  Google Scholar 

  • Li B and Li SH, 2011a. Luminescence dating of K-feldspar from sedi-ments: A protocol without anomalous fading correction. Quaternary Geochronology 6(5): 468–479, DOI 10.1016/j.quageo.2011.05.001.

    Article  Google Scholar 

  • Li B and Li SH, 2011b. A reply to the comments by Thomsen et al. on “Luminescence dating of K-feldspar from sediments: a protocol without anomalous fading correction”. Quaternary Geochronology 8: 49–51, DOI 10.1016/j.quageo.2011.10.001.

    Article  Google Scholar 

  • Li B and Li SH, 2012. Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar. Quaternary Geochronology 10: 24–31, DOI 10.1016/j.quageo.2011.12.005.

    Article  Google Scholar 

  • Li B, Roberts RG and Jacobs Z, 2013. On the dose dependency of the bleachable and non-bleachable components of IRSL from K-feldspar: Improved procedures for luminescence dating of Quaternary sediments. Quaternary Geochronology 17: 1–13, DOI 10.1016/j.quageo.2013.03.006.

    Article  Google Scholar 

  • Liu TS, 1985. Loess and the Environment. China Ocean Press.

    Google Scholar 

  • Lowick S, Trauerstein M and Preusser F, 2012. Testing the application of post IR-IRSL dating to fine grain waterlain sediments. Quaternary Geochronology 8: 33–40, DOI 10.1016/j.quageo.2011.12.003.

    Article  Google Scholar 

  • Lu YC, Wang XL and Wintle AG, 2007. A new OSL chronology for dust accumulation in the last 130,000 yr for the Chinese Loess Plateau. Quaternary Research 67(1): 152–160, DOI 10.1016/j.yqres.2006.08.003.

    Article  Google Scholar 

  • Madsen AT, Buylaert JP and Murray AS, 2011. Luminescence dating of young coastal deposits from New Zealand using feldspar. Geochronometria 38(4): 378–390, DOI 10.2478/s13386-011-0042-5.

    Article  Google Scholar 

  • Porter SC and An ZS, 1995. Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375: 305–308, DOI 10.1038/375305a0.

    Article  Google Scholar 

  • Prescott JR and Hutton JT, 1994. Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurements 23(2–3): 497–500, DOI 10.1016/1350-4487(94)90086-8.

    Article  Google Scholar 

  • Qin JT and Zhou LP, 2012. Effects of thermally transferred signals in the post-IR IRSL SAR protocol. Radiation Measurements 47(9): 710–715, DOI 10.1016/j.radmeas.2011.12.011.

    Article  Google Scholar 

  • Reimann T, Tsukamoto S, Naumann M and Frechen M, 2011. The potential of using feldspars for optical dating of young coastal sediments-a test case from DarssZingst peninsula. Quaternary Geo-chronology 6(2): 207–222, DOI 10.1016/j.quageo.2010.10.001.

    Google Scholar 

  • Reimann T and Tsukamoto S, 2012. Dating the recent past (<500 years) by post-IR IRSL feldspar-Examples from the North Sea and Baltic Sea coast. Quaternary Geochronology 10: 180–187, DOI 10.1016/j.quageo.2012.04.011.

    Article  Google Scholar 

  • Roberts HM, 2012. Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control. Radiation Measurements 47(9): 716–724, DOI 10.1016/j.radmeas.2012.03.022.

    Article  Google Scholar 

  • Spooner NA, 1994. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements 23(2–3): 625–632, DOI 10.1016/1350-4487(94)90111-2.

    Article  Google Scholar 

  • Stevens T, Markovic SB, Zech M, Hambach U and Sümegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30(5–6): 662–681, DOI 10.1016/j.quascirev.2010.12.011.

    Article  Google Scholar 

  • Thiel C, Buylaert JP, Murray AS, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) — testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31, DOI 10.1016/j.quaint.2010.05.018.

    Article  Google Scholar 

  • Thomsen KJ, Murray AS, Jain M and Bøtter-Jensen L, 2008. Laborato-ry fading rates of various luminescence signals from feldspar-rich sediment extracts. Radiation Measurements 43(9–10): 1474–1486, DOI 10.1016/j.radmeas.2008.06.002.

    Article  Google Scholar 

  • Tsukamoto S, Denby PM, Murray AS and Bøtter-Jensen L, 2006. Time-resolved luminescence from feldspars: New insight into fading. Radiation Measurements 41(7-8): 790–795: DOI 10.1016/j.radmeas.2006.05.013.

    Article  Google Scholar 

  • Wallinga J, Murray A and Duller G, 2000. Underestimation of equiva-lent dose in single-aliquot optical dating of feldspars caused by preheating. Radiation Measurements 32(5–6): 691–695, DOI 10.1016/S1350-4487(00)00127-X.

    Article  Google Scholar 

  • Wang XL and Wintle AG, 2013. Investigating the contribution of recuperated TL to post-IR IRSL signals in a perthitic feldspar. Ra-diation Measurements 49: 82–87, DOI 10.1016/j.radmeas.2012.12.003.

    Article  Google Scholar 

  • Wintle AG, 1973. Anomalous fading of thermoluminescence in mineral samples. Nature 245: 143–144, DOI 10.1038/245143a0.

    Article  Google Scholar 

  • Zhao H and Li SH, 2005. Internal dose rate to K-feldspar grains from radioactive elements other than potassium. Radiation Measure-ments 40(1): 84–93, DOI 10.1016/j.radmeas.2004.11.004.

    Article  Google Scholar 

  • Zhu RX, Zhang R, Deng CL, Pan YX, Liu QS and Sun YB, 2007. Are Chinese loess deposits essentially continuous? Geophysical Research Letters 34(17): L17306, DOI 10.1029/2007GL030591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Fu.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X. The D e (T, t) plot: A straightforward self-diagnose tool for post-IR IRSL dating procedures. Geochron 41, 315–326 (2014). https://doi.org/10.2478/s13386-013-0167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13386-013-0167-9

Keywords

Navigation