Skip to main content
Log in

The role of open-air inhalatoria in the air quality improvement in spa towns

  • Original Paper
  • Published:
International Journal of Occupational Medicine and Environmental Health

Abstract

Objectives

The present study was aimed at evaluating microbiological contamination of air in Ciechocinek and Inowrocław — Polish lowland spa towns. Additionally, the impact of open-air inhalatoria on the quality of air was evaluated.

Material and Methods

Air samples were collected seasonally in the urban areas, in the recreation areas and in the vicinity of inhalatoria in both towns using impaction. The numbers of mesophilic bacteria, staphylococci, hemolytic bacteria and actinomycetes were determined on media according to the Polish Standard PN-86/Z-04111/02. The number of moulds was determined on media according to the Polish Standard PN-86/Z-04111/03.

Results

While the highest numbers of microorganisms were noted at the sites located in the urban areas, the lowest numbers were noted in the vicinity of the open-air inhalatoria. In all the investigated air samples the values of bioaerosol concentrations were below the recommended TLVs (≤ 5000 CFU×m−3 for both bacteria and fungi in outdoor environments). Location of the sampling site was invariably a decisive factor in determining the number of microorganisms in the air.

Conclusions

The aerosol which is formed in the open-air inhalatoria has a positive influence on microbiological air quality. Owing to a unique microclimate and low air contamination, Ciechocinek and Inowrocław comply with all necessary requirements set for health resorts specializing in treating upper respiratory tract infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fuzzi S, Andreae MO, Huebert BJ, Kulmala M, Bond TC, Boy M, et al. Critical assessment of the current state of scientific knowledge, terminology, and research needs concerning the role of organic aerosols in the atmosphere, climate, and global change. Atmos Chem Phys. 2006;6:2017–2038, http://dx.doi.org/10.5194/acp-6-2017-2006.

    Article  CAS  Google Scholar 

  2. Despre’s V, Huffman AJ, Burrows SM, Hoose C, Safatov AS, Buryak G, et al. Primary biological aerosol particles in the atmosphere: A review. Tellus B. 2012;64:15598, http://dx.doi.org/10.3402/tellusb.v64i0.15598.

    Google Scholar 

  3. Polymenakou PN. Atmosphere: A source of pathogenic or beneficial microbes? Atmosphere. 2012;3:87–102, http://dx.doi.org/10.3390/atmos3010087.

    Article  Google Scholar 

  4. Peternel R, Culig J, Hrga I. Atmospheric concentrations of Cladosporium spp. and Alternaria spp. spores in Zagreb (Croatia) and effects of some meteorological factors. Ann Agric Environ Med. 2004;11:303–307.

    PubMed  Google Scholar 

  5. Rossi V, Bugiani R, Giosué S, Natali P. Patterns of airborne conidia of Stemphylium vesicarium, the causal agent of brown spot disease of pears, in relation to weather conditions. Aerobiologia. 2005;21:203–216, http://dx.doi.org/10.1007/s10453-005-9002-y.

    Article  Google Scholar 

  6. Griffin DW, Kubilay N, Kocak M, Gray MA, Borden TC, Shinn EA. Airborne desert dust and aeromicrobiology over the Turkish Mediterranean coastline. Atmos Environ. 2007;41:4050–4062, http://dx.doi.org/10.1016/j.atmosenv.2007.01.023.

    Article  CAS  Google Scholar 

  7. Sultan B, Labadi K, Guegan JF, Janicot S. Climate drives the meningitis epidemics onset in West Africa. PLOS Med. 2005;Jan 25, http://dx.doi.org/10.1371/journal.pmed.0020006.

  8. Polymenakou PN, Mandalakis M, Tselepides A, Stephanou EG. Particle size distribution of airborne microorganisms and pathogens during an intense African dust event in the Eastern Mediterranean. Environ Health Persp. 2008;116:292–296, http://dx.doi.org/10.1289/ehp.10684.

    Article  Google Scholar 

  9. Jie Y, Houjin H, Feng J, Jie X. The role of airborne microbes in school and its impact on asthma, allergy, and respiratory symptoms among school children. Rev Med Microbiol. 2011;22:84–89, http://dx.doi.org/10.1097/MRM.0b013e32834a449c.

    Article  Google Scholar 

  10. Prunk A, Azman J, Frkovic V, Skrobonja A, Muzur A. Physician Albin Eder and his contribution to the development of health resorts in the Northern Adriatic area. Public Health. 2008;122:1131–1133, http://dx.doi.org/10.1016/j.puhe.2007.10.008.

    Article  CAS  PubMed  Google Scholar 

  11. Krupa WA. [Conditions necessary for the proper functioning of the spa treatment]. Proceedings of the XVIII Congress of Polish Health Resorts; 2009 Jun 4–7; Muszyna, Poland. Sopot: Izba Gospodarcza “Uzdrowiska Polskie”; 2009. Polish.

    Google Scholar 

  12. Gawlak E. [125 years of spa treatment in Inowrocław]. Balneol Pol. 1999;41:47–51. Polish.

    Google Scholar 

  13. Kozłowska-Szczęsna T, Krawczyk B, Błażejczyk K. The main features of bioclimatic conditions at Polish health resorts. Geogr Pol. 2004;77:45–61.

    Google Scholar 

  14. Kosman M, editor. [Inowrocław — The capital of the Western Kujawy on background selected European resorts]. Poznań: Adam Mickiewicz University Press; 2010. Polish.

    Google Scholar 

  15. Polish Standard PN-89/Z-04008/08. [Air purity protection. Sampling. Atmospheric air sampling for microbiological examination by aspiration and sedimentation method]. Warszawa: Wydawnictwa Normalizacyjne “Alfa”; 1989. Polish.

    Google Scholar 

  16. Yao M, Mainelis G. Investigation of cut-off sizes and collection efficiencies of portable microbial samplers. Aerosol Sci Technol. 2006;40:595–606, http://dx.doi.org/10.1080/02786820600729146.

    Article  CAS  Google Scholar 

  17. Polish Standard PN-86/Z-04111/02. [Air purity protection. Microbiological testings. Determination of the number of bacteria in the atmospheric air (imission) with sampling by aspiration and sedimentation method]. Warszawa: Wydawnictwa Normalizacyjne “Alfa”; 1986. Polish.

    Google Scholar 

  18. Polish Standard PN-86/Z-04111/03. [Air purity protection. Microbiological testings. Determination of the number of fungi in the atmospheric air (imission) with sampling by aspiration and sedimentation method]. Warszawa: Wydawnictwa Normalizacyjne “Alfa”; 1986. Polish.

    Google Scholar 

  19. Helbin J, Kolarzyk E. [Natural environment advantages in pharmacological treatment support]. Probl Hig Epidemiol. 2005;86:22–26. Polish.

    Google Scholar 

  20. Zhilina LP, Dobrodceeva LK. Features of the physical state of schoolchildren before and after a stay at a sanatorium. Human Physiol. 2005;31:142–144, http://dx.doi.org/10.1007/s10747-005-0039-7.

    Article  CAS  Google Scholar 

  21. [The Act of 28 July 2005 of spa therapy, spas and spa protected areas and the spa municipalities. J Laws 2005, no. 05.167.1399, item 46, 2 (Sep 21, 2005)]. Polish.

  22. Tang JW. The effect of environmental parameters on the survival of airborne infectious agents. J R Soc Interface. 2009;6:S737–746, http://dx.doi.org/10.1098/rsif.2009.0227.focus.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Burkowska A, Donderski W. Bacterial pollution of air in health resort Ciechocinek. Pol J Natur Sci. 2007;22:633–644, http://dx.doi.org/10.2478/v10020-007-0054-z.

    Article  Google Scholar 

  24. Burkowska A, Donderski W. Airborne molds in the air of Ciechocinek spa. Pol J Natur Sci. 2008;23:790–800, http://dx.doi.org/10.2478/v10020-008-0063-6.

    Article  Google Scholar 

  25. Burkowska A, Kalwasińska A, Walczak M. Airborne mesophilic bacteria at the Ciechocinek Health Resort. Pol J Environ Stud. 2012;21:307–312.

    Google Scholar 

  26. Burkowska A, Donderski W. [The microbes in the air over the municipal and spa areas of Inowrocław]. Ekol Tech. 2008;96A:25–28. Polish.

    Google Scholar 

  27. Bovallius A, Roffey R, Henningson E. Long-range transmission of bacteria. Ann NY Acad Sci. 1980;353:186–200, http://dx.doi.org/10.1111/j.1749-6632.1980.tb18922.x.

    Article  CAS  PubMed  Google Scholar 

  28. Krawiec A. [The curative water in Ciechocinek]. In: Krawiec A, editor. [The hydrogeology of Kujawy and Lower Powiśle]. Toruń: Nicolaus Copernicus University Press; 2005. p. 35–42. Polish.

    Google Scholar 

  29. Grzyb J, Bis H, Barabasz W, Frączek K, Chmiel MJ. [Studium upon bacteria occurence in air of Bochnia and Wieliczka Salt Mine chambers]. Acta Agr Silv Ser Silv. 2004;42: 163–176. Polish.

    Google Scholar 

  30. Frączek K, Górny RL, Ropek D. Bioaerosols of subterraneotherapy chambers at salt mine health resort. Areobiol. 2013;29:481–493, http://dx.doi.org/10.1007/s10453-013-9298-y.

    Article  Google Scholar 

  31. Frączek K, Górny RL. Microbial air quality at Szczawnica sanatorium, Poland. Ann Agric Environ Med. 2011;18:63–71.

    PubMed  Google Scholar 

  32. Walczak M, Lalke-Porczyk E, Krawiec A. [Survival of bacteria in geothermal waters]. Techn Poszuk Geolog. 2011;1–2: 413–423. Polish.

    Google Scholar 

  33. Fang ZG, Ouyang ZY, Zheng H, Wang XK, Hu LF. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb Ecol. 2007;54:487–496, http://dx.doi.org/10.1007/s00248-007-9216-3.

    Article  PubMed  Google Scholar 

  34. Fahlgren C, Bratbak G, Sandaa R-A, Thyrhaug R, Zweifel UL. Diversity of airborne bacteria in samples collected using different devices for aerosol collection. Aerobiologia. 2010;27:107–120, http://dx.doi.org/10.1007/s10453-010-9181-z.

    Article  Google Scholar 

  35. Górny RL. [Biological aerosols — A role of hygienic standards in the protection of environment and health]. Environ Med. 2010;13:41–51. Polish.

    Google Scholar 

  36. Abdel Hameed AA, Koder MI, Yuosra S, Osman AM, Ghanem S. Diurnal distribution of airborne bacteria and fungi in the atmosphere of Helwan area, Egypt. Sci Total Environ. 2009;407(24):6217–6222, http://dx.doi.org/10.1016/j.scitotenv.2009.08.028.

    Article  CAS  PubMed  Google Scholar 

  37. Flipiak M, Piotraszewska-Pająk A, Stryjakowska-Sekulska M, Stach A, Silny W. [Outdoor and indoor air microflora of academic buildings in Poznań]. Postepy Dermatol Alergol. 2004;XXI(3):121–127. Polish.

    Google Scholar 

  38. Bugajny A, Knopkiewicz M, Piotraszewska-Pająk A, Sekulska-Stryjakowska M, Stach A, Filipiak M. On the microbiological quality of the outdoor air in Poznań, Poland. Pol J Environ Stud. 2005;14:287–293.

    Google Scholar 

  39. Brodie EL, DeSantis TZ, Parker JPM, Zubietta IX, Piceno YM, Andersen GL. Urban aerosols harbor diverse and dynamic bacterial populations. Proc Natl Acad Sci USA. 2007;104:299–304, http://dx.doi.org/10.1073/pnas.0608255104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Ravva SV, Hernlem BJ, Sarreala CZ, Mandrella RE. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria. J Environ Monit. 2012;14: 473–481, http://dx.doi.org/10.1039/c1em10753d.

    Article  CAS  PubMed  Google Scholar 

  41. Green BJ, Tovey ER, Sercombe JK, Blachere FM, Beezhold DH, Schmechel D. Airborne fungal fragments and allergenicity. Med Mycol. 2006;44:245–255, http://dx.doi.org/10.1080/13693780600776308.

    Article  Google Scholar 

  42. Bush RK, Portnoy JM, Saxon A, Terr AI, Wood RA. The medical effects of mold exposure. J Allergy Clin Immunol. 2006;117:326–333, http://dx.doi.org/10.1016/j.jaci.2005.12.001.

    Article  PubMed  Google Scholar 

  43. Iossifova Y, Reponen T, Ryan PH, Levin L, Bernstein DI, Lockey JE, et al. Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy Asthma Immunol. 2009;102:131–137, http://dx.doi.org/10.1016/S1081-1206(10)60243-8.

    Article  CAS  PubMed  Google Scholar 

  44. Womiloju TO, Miller JD, Mayer PM, Brook JR. Methods to determine the biological composition of particulate matter collected from outdoor air. Atmos Environ. 2003;37:4335–4344, http://dx.doi.org/10.1016/S1352-2310(03)00577-6.

    Article  CAS  Google Scholar 

  45. Elbert W, Taylor PE, Andreae MO, Poschl U. Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates and inorganic ions. Atmos Chem Phys. 2007;7:4569–4588, http://dx.doi.org/10.5194/acp-7-4569-2007.

    Article  CAS  Google Scholar 

  46. Bauer H, Schueller E, Weinke G, Berger A, Hitzenberger R, Marr IL, et al. Significant contributionss of fungal spores to the organic carbon and to the aerosol mass balance of the urban atmospheric aerosol. Atmos Environ. 2008;42:5542–5549, http://dx.doi.org/10.1016/j.atmosenv.2008.03.019.

    Article  CAS  Google Scholar 

  47. Crawford C, Reponen T, Lee T, Iossifova Y, Levin L, Adhikari A, et al. Temporal and spatial variation of indoor and outdoor airborne fungal spores, pollen, and (1–3)-beta-d-glucan. Aerobiologia. 2009;25:147–158, http://dx.doi.org/10.1007/s10453-009-9120-z.

    Article  Google Scholar 

  48. Fröhlich-Nowoisky J, Pickersgill DA, Després VR, Pöschl U. High diversity of fungi in air particulate matter. Proc Natl Acad Sci USA. 2009;106:12814–12819, http://dx.doi.org/10.1073/pnas.0811003106.

    Article  PubMed Central  PubMed  Google Scholar 

  49. Kasprzyk I, Worek M. Airborne fungal spores in urban and rural environments in Poland. Aerobiologia. 2006;22: 169–176, http://dx.doi.org/10.1007/s10453-006-9029-8.

    Article  Google Scholar 

  50. Research Triangle Institute. Test report of filtration efficiency of bioaerosols in HVAC systems, ASHRAE 52.2 test report. Engineering and Technology Unit Research Triangle Park, NC 27709. 2004

    Google Scholar 

  51. Ljungqvist B, Reinmüller B. The Biotest RCS air sampler in unidirectional flow. J Pharm Sci Tech. 1994;48:41–44.

    CAS  Google Scholar 

  52. Nesa D, Lortholary J, Bouakline A, Bordes M, Chandenier J, Derouin F, et al. Comparative performance of impactor air samplers for quantification of fungal contamination. J Hosp Inf. 2001;47:149–155, http://dx.doi.org/10.1053/jhin.2000.0883.

    Article  CAS  Google Scholar 

  53. Whyte W. Collection efficiency of microbial methods used to monitor cleanrooms. Europ J Parent Pharm Sci. 2005;10:3–7.

    Google Scholar 

  54. Klarić M, Pepeljnjak S. Year-round aeromycological study in Zagreb area, Croatia. Ann Agric Environ Med. 2006;13:55–64.

    Google Scholar 

  55. Mitakakis T, O’Meara T, Tovey E. The effect of sunlight on allergen release from spores of the fungus Alternaria. Grana. 2005;42:43–46, http://dx.doi.org/10.1080/00173130310008571.

    Article  Google Scholar 

  56. Lin W, Li C. Associations of fungal aerosols, air pollutants, and meteorological factors. Aerosol Sci Tech. 2000;32: 359–368, http://dx.doi.org/10.1080/027868200303678.

    Article  CAS  Google Scholar 

  57. Pepeljnjak S, Šegvić M. Seasonal variability in airborne bacterial communities at a high-elevation site. Aerobiologia. 2003;19:11–19, http://dx.doi.org/10.1023/A:1022693032075.

    Article  Google Scholar 

  58. Maron PA, Lejon DPH, Carvalho E, Bizet K, Lemanceau P, Ranjard L, et al. Assessing genetic structure and diversity of airborne bacterial communities by DNA fingerprinting and 16S rDNA clone library. Atmos Environ. 2005;39:3687–3695, http://dx.doi.org/10.1016/j.atmosenv.2005.03.002.

    Article  CAS  Google Scholar 

  59. Bowers RM, McCubbin IB, Hallar AG, Fierer N. Seasonal variability in airborne bacterial communities at a high-elevation site. Atmos Environ. 2012;50:41–49, http://dx.doi.org/10.1016/j.atmosenv.2012.01.005.

    Article  CAS  Google Scholar 

  60. Harrison RM, Jones AM, Biggins PDE, Pomeroy N, Cox CS, Kidd SP, et al. Climate factors influencing bacterial count in background air samples. Int J Biometeo. 2005;49:167–178, http://dx.doi.org/10.1007/s00484-004-0225-3.

    Article  Google Scholar 

  61. Lee AKY, Lau APS, Cheng JYW, Fang M, Chan CK. Source identification analysis for the airborne bacteria and fungi using a biomarker approach. Atmos Environ. 2007;41: 2831–2843, http://dx.doi.org/10.1016/j.atmosenv.2006.11.047.

    Article  CAS  Google Scholar 

  62. Maron PA, Mougel C, Lejon DPH, Carvalho E, Bizet K, Marck G, et al. Temporal variability of airborne bacterial community structure in an urban area. Atmos Environ. 2006;40:8074–8080, http://dx.doi.org/10.1016/j.atmosenv.2006.08.047.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandra Burkowska-But.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkowska-But, A., Kalwasińska, A. & Brzezinska, M.S. The role of open-air inhalatoria in the air quality improvement in spa towns. IJOMEH 27, 560–570 (2014). https://doi.org/10.2478/s13382-014-0274-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13382-014-0274-8

Key words

Navigation