Skip to main content
Log in

White matter architecture of the language network

  • Review Article
  • Published:
Translational Neuroscience

Abstract

The relevance of anatomical connectivity for understanding of the neural basis of language was recognized in the 19th century, and yet this topic has only recently become the subject of wider research interest. In this paper, I review recent findings on white matter tracts implicated in language: the arcuate fasciculus, superior longitudinal fasciculus, extreme capsule, uncinate fasciculus, middle longitudinal fasciculus, inferior longitudinal fasciculus, and inferior fronto-occipital fasciculus. The reviewed findings on these tracts were reported in studies that used a variety of methods, from post-mortem dissection and diffusion imaging to intraoperative electrostimulation with awake surgery patients. The emerging picture suggests that there is currently no consensus with regard to the exact number and identity of the tracts supporting language, their origins, trajectories, and terminations, as well as their functional interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AF:

arcuate fasciculus

BA:

Brodmann area

DTI:

diffusion tensor imaging

EC:

external capsule

EmC:

extreme capsule

IFG:

inferior frontal gyrus

IFOF:

inferior fronto-occipital fasciculus

ILF:

inferior longitudinal fasciculus

MdLF:

middle longitudinal fasciculus

MFG:

middle frontal gyrus

MRI:

magnetic resonance imaging

SFG:

superior frontal gyrus

SLF:

superior longitudinal fasciculus

STG:

superior temporal gyrus

STS:

superior temporal sulcus

UF:

uncinate fasciculus

WM:

white matter

References

  1. Mesulam M.-M., Representation, inference, and transcendent encoding in neurocognitive networks of the human brain, Ann. Neurol., 2008, 64, 367–378

    PubMed  Google Scholar 

  2. Buckner R., Andrews-Hanna J.R., Schacter D.L., The brain’s default network anatomy, function, and relevance to disease, Ann. NY Acad. Sci., 2008, 1124, 1–38

    PubMed  Google Scholar 

  3. Mesulam M.-M., Large-scale neurocognitive networks and distributed processing for attention, language, and memory, Ann. Neurol., 1990, 28, 597–613

    PubMed  CAS  Google Scholar 

  4. Mesulam M.-M., Imaging connectivity in the human cerebral cortex: the next frontier?, Ann. Neurol., 2005, 57, 5–7

    PubMed  Google Scholar 

  5. Mesulam M.-M., Defining neurocognitive networks in the BOLD new world of computed connectivity. Neuron, 2009, 62, 1–3

    PubMed  CAS  Google Scholar 

  6. Assaf Y., Pasternak O., Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review, J. Mol. Neuroscience, 2008, 34, 51–61

    CAS  Google Scholar 

  7. Oishi K., Faria A., van Zijl P.C.M., Mori S., MRI atlas of human white matter, Elsevier, Amsterdam, The Netherlands, 2011

    Google Scholar 

  8. Le Bihan D., Mangin J.-F., Poupon C., Clark C.A., Pappata S., Molko N., et al., Diffusion tensor imaging: concepts and applications, J. Magn. Reson. Imaging, 2001, 13, 534–546

    PubMed  Google Scholar 

  9. O’Donnell L.J., Westin C-F., An introduction to diffusion tensor image analysis, Neurosurg. Clin. N. Am., 2011, 22, 185–196

    PubMed  PubMed Central  Google Scholar 

  10. Kljajevic V., Meyer P., Holzmann C., Dyrba M., Kasper E., Bokde A.L.W., et al., The ɛ4 genotype of apolipoprotein E and white matter integrity in Alzheimer’s disease, Alzheimers Dement., 2014, 10, 401–404

    PubMed  Google Scholar 

  11. Kollias S., Parcelation of the white matter using DTI: insights into the functional connectivity of the brain, Neuroradiol. J., 2009, 22(Supl. 1), 45–58

    Google Scholar 

  12. Basser P.J., Özarslan E., Introduction to diffusion MRI, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Elsevier, Amsterdam, The Netherlands, 2009, 3–10

    Google Scholar 

  13. Mori S., van Zijl P.C.M., Fiber tracking: principles and strategies — a technical review, NMR Biomed., 2002, 15, 468–480

    PubMed  Google Scholar 

  14. Mori S., Introduction to difussion tensor imaging, Elsevier, Amsterdam, The Netherlands, 2007

    Google Scholar 

  15. Seunarine K., Alexander D.C., Multiple fibers: beyond the diffusion tensor, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Elsevier, Amsterdam, The Netherlands, 2009, 55–72

    Google Scholar 

  16. Passingham R.E., What we can and cannot tell about the wiring of the human brain, Neuroimage, 2013, 80, 14–17

    PubMed  Google Scholar 

  17. Meynert T.H., Ein Fall von Sprachstörung, anatomisch begründet. Medizinische Jahrbücher. XII. Band der Zeitschrift der K. K. Gesellleschaft der Arzte in Wien, 22. Jahr, 1866, 152–189

    Google Scholar 

  18. Broca P., Sur le siege de la faculté du langage articulé, Bulletin de la Société d’Anthropologie, 1865, 6, 337–393

    Google Scholar 

  19. Wernicke C., Der aphasiche Symptomenkomplex, Cohn und Weigert, Breslau, 1874

    Google Scholar 

  20. Lichtheim L., On aphasia, Brain, 1885, 7, 433–484

    Google Scholar 

  21. Geschwind N., Disconnexion syndromes in animals and man, Brain, 1965, 88, 585–644

    PubMed  CAS  Google Scholar 

  22. Geschwind N., The organization of language in the brain, Science, 1970, 170, 940–944

    PubMed  CAS  Google Scholar 

  23. Catani M., Jones D.K., ffytche D.H., Perisylvian language networks of the human brain, Ann. Neurol., 2005, 57, 8–16

    PubMed  Google Scholar 

  24. Vigneau M., Beaucousin V., Hervé P.Y., Duffau H., Crivello F., Houdé O., et al., Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing, Neuroimage, 2006, 30, 1414–1432

    CAS  Google Scholar 

  25. Price C.J., The anatomy of language: a review of 100 fMRI studies published in 2009, Ann. NY Acad. Sci., 2010, 1191, 62–88

    PubMed  Google Scholar 

  26. Price C.J., A review and synthesis of the first 20 years pf PET and fMRI studies of heard speech, spoken language and reading, Neuroimage, 2012, 62, 816–847

    Google Scholar 

  27. Signoret J.-L., Castaigne P., Lhermitte F., Abelanet R., Lavorel P., Rediscovery of Leborgne’s brain: anatomical description with CT scan, Brain Lang., 1984, 22, 303–319

    PubMed  CAS  Google Scholar 

  28. Dronkers N.F., Plaisant O., Iba-Zizen M.T., Cabanis E.A., Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong, Brain, 2007, 130, 1432–1441

    PubMed  CAS  Google Scholar 

  29. Damasio H., Damasio A.R., The anatomical basis of conduction aphasia, Brain, 1980, 103, 337–350

    PubMed  CAS  Google Scholar 

  30. Shuren J.E., Schefft B.K., Yeh H.-S., Privitera M.D., Cahill W.T., Houston W., Repetiotion and the arcuate fasciculus, J. Neurol., 1995, 242, 596–598

    PubMed  CAS  Google Scholar 

  31. Quigg M., Geldmacher D.S., Elias J.W., Conduction aphasia as a function of the dominant posterior perisylvian cortex, J. Neurosurg., 2006, 104, 845–848

    PubMed  Google Scholar 

  32. Rauschecker A.M., Deutsch G.K., Ben-Shachar M., Schwartzman A., Perry L.M., Dougherty R.F., Reading impairment in a patient with missing arcuate fasciculus, Neuropsychologia, 2009, 47, 180–194

    PubMed  PubMed Central  Google Scholar 

  33. Benson F., Sheremata W.A., Bouchard R., Segarra J.M., Price D., Geschwind N., Conduction aphasia: a clinicopathological study, Arch. Neurol., 1973, 28, 339–346

    PubMed  CAS  Google Scholar 

  34. Axer H., von Keyserlingk A.G., Berks G., von Keyserlingk D.G., Supra- and infrasylvian conduction aphasia, Brain Lang., 2001, 76, 317–331

    PubMed  CAS  Google Scholar 

  35. Kempen G., Sentence parsing, In: Friederici A. (Ed.), Language comprehension: a biological perspective, Springer, Berlin, Germany, 1998, 213–228

    Google Scholar 

  36. Tyler L.K., Marslen-Wilson W., Fronto-temporal brain systems supporting spoken language comprehension, Phil. Trans. R. Soc. Lond. B, 2008, 363, 1037–1054

    Google Scholar 

  37. Mishkin M., Ungerleider L.G., Macko K.A., Object vision and spatial vision: two cortical pathways, Trends Neurosci., 1983, 6, 414–417

    Google Scholar 

  38. Rauschecker J.P., Tian B., Mechanisms and streams for processing of “what“ and “where” in auditory cortex, Proc. Natl. Acad. Sci USA, 2000, 97, 11800–11806

    PubMed  CAS  PubMed Central  Google Scholar 

  39. Hickok G., Poeppel D., Towards a functional anatomy of speech perception, Trends Cogn. Sci., 2000, 4, 131–138

    PubMed  Google Scholar 

  40. Hickok G., Poeppel D., Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language, Cognition, 2004, 92, 67–99

    PubMed  Google Scholar 

  41. Hickok G., Poeppel D., The cortical organization of speech processing, Nat. Rev. Neurosci., 2007, 8, 393–402

    PubMed  CAS  Google Scholar 

  42. Axer H., Klingner C.M., Prescher A., Fiber anatomy of dorsal and ventral language streams, Brain Lang., 2013, 127, 192–204

    PubMed  Google Scholar 

  43. Hickok G., The functional neuroanatomy of language, Phys. Life Rev., 2009, 6, 121–143

    PubMed  PubMed Central  Google Scholar 

  44. Petrides M., Pandya D.N., Neural circuitry underlying language, In: Mariën P., Abutalebi, J. (Eds.), Neuropsychological research, Psychology Press, New York, NY, USA, 2008, 25–50

    Google Scholar 

  45. Gharabaghi A., Kunath F., Erb M., Saur R., Heckl S., Tatagiba M., et al., Perisylvian white matter connectivity in the human right hemisphere. BMC Neurosci., 2009, 10, 15

    PubMed  PubMed Central  Google Scholar 

  46. Thiebaut de Schotten M., Dell’Acqua F., Valabregue R., Catani, M., Monkey to human comparative anatomy of the frontal lobe association tracts, Cortex, 2012, 48, 82–96

    PubMed  Google Scholar 

  47. Makris N., Kennedy D.N., McInerney S., Sorensen A.G., Wang R., Caviness V., et al., Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DTMRI study, Cereb. Cortex, 2005, 15, 854–869

    Google Scholar 

  48. Petrides M., Pandya D.N., Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey, J. Comp. Neurol., 1988, 273, 52–66

    PubMed  CAS  Google Scholar 

  49. Bernal B., Altman N., The connectivity of the superior longitudinal fasciculus: a tractography DTI study, Magn. Reson. Imaging, 2010, 28, 217–225

    PubMed  Google Scholar 

  50. Bernal B., Ardila A., The role of the arcuate fasciculus in conduction aphasia, Brain, 2009, 132, 2309–2316

    PubMed  Google Scholar 

  51. Petrides M., Pandya D.N., Projections to the frontal cortex from the posterior parietal region in the rhesus monkey, J. Comp. Neurol., 1984, 228, 105–116

    PubMed  CAS  Google Scholar 

  52. Jones D.K., Studying connections in the living human brain with diffusion MRI, Cortex, 2008, 44, 936–952

    PubMed  Google Scholar 

  53. Rilling J.K., Glasser M.F., Preuss T.M., Ma X, Zhao T., Hu X., et al., The evolution of the arcuate fasciculus revealed with comparative DTI, Nat. Neurosci., 2008, 11, 426–428

    PubMed  CAS  Google Scholar 

  54. Parker G.J., Luzzi S., Alexander D.C., Wheeler-Kingshott C.A., Ciccarelli O., Lambon Ralf, M.A., Lateralization of ventral and dorsal auditorylanguage pathways in the human brain, Neuroimage, 2005, 24, 656–666

    PubMed  Google Scholar 

  55. Glasser M.F., Rilling J.K., DTI tractography of the human brain’s language pathways, Cereb. Cortex, 2008, 18, 2471–2482

    PubMed  Google Scholar 

  56. Catani M., Dell’Acqua F., Bizzi A., Firkel S.J., Williams S.C., Simmons A., et al., Beyond cortical localization in clinico-anatomical correlation, Cortex, 2012, 48, 1262–1287

    PubMed  Google Scholar 

  57. Fridriksson J., Guo D., Fillmore P., Holland A., Rorden C., Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia, Brain, 2013, 136, 3451–3460

    PubMed  Google Scholar 

  58. Duffau H., Capelle L., Sichez N., Denvil D., Lopes M., Sichez J.-P., et al., Intraoperative mapping of the subcortical language pathways using direct stimulation. An anatomo-functional study, Brain, 2002, 125, 199–214

    PubMed  Google Scholar 

  59. Duffau H., Gatinol P., Moritz-Gasser S., Mandonnet E., Is the left uncinate fasciculus essential for language?, J. Neurol., 2009, 256, 382–389

    PubMed  Google Scholar 

  60. Maldonado I.L., Moritz-Gasser S., Duffau H., Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study, Brain Struct. Funct., 2011, 216, 263–274

    PubMed  Google Scholar 

  61. Rolheiser T., Stamatakis E.A., Tyler L.K., Dynamic processing in the human language system: synergy between the arcuate fascicle and extreme capsule, J. Neurosci., 2011, 31, 16949–16957

    PubMed  CAS  PubMed Central  Google Scholar 

  62. Wilson S.M., Galantucci S., Tartaglia M.C., Rising K., Patterson D.K., Henry M.L., et al., Syntactic processing depends on dorsal language tracts, Neuron, 2011, 72, 397–403

    PubMed  CAS  PubMed Central  Google Scholar 

  63. Catani M., Craig M.C., Forkel S.J., Kanaan R., Picchioni M., Toulopoulou T., et al., Altered integrity of perisylvian language pathways in schizophrenia: relationship to auditory hallucinations, Biol. Psychiatry, 2011, 70, 1143–1150

    PubMed  Google Scholar 

  64. López-Barroso D., Catani M., Ripollés P., Dell’Acqua F., Rodríguez-Fornells A., de Diego-Balaguer R., Word learning is mediated by the left arcuate fasciculus, Proc. Natl. Acad. Sci USA, 2013, 110, 13168–13173

    PubMed  PubMed Central  Google Scholar 

  65. Thiebaut de Schotten M., Cohen L., Amemiya E., Braga L.W., Dehaene S., Learning to read improves the structure of the arcuate fasciculus, Cereb. Cortex, 2014, 24, 989–995

    PubMed  Google Scholar 

  66. Schmahmann J.D., Pandya D.N., Wang R., Dai G., D’Arceuil H.E., de Crespigny A.J. et al., Association fiber pathways of the brain: parallel observation from diffusion spectrum imaging and autoradiography, Brain, 2007, 130, 630–653

    PubMed  Google Scholar 

  67. Makris N., Pandya D.N., The extreme capsule in humans and rethinking of the language circuitry, Brain Struct. Funct., 2009, 213, 343–358

    PubMed  PubMed Central  Google Scholar 

  68. Saur D., Kreher B.W., Schnell S., Kümmerer D., Kellmeyer P., Vry M.S., et al., Ventral and dorsal pathways for language, Proc. Natl. Acad. Sci. USA, 2008, 105, 18035–18040

    PubMed  CAS  PubMed Central  Google Scholar 

  69. Frey S., Campbell J.S.W., Pike B.G., Petrides M., Dissociating the human language pathways with high angular resolution diffusion fiber tractography, J. Neurosci., 2008, 28, 11435–11444

    PubMed  CAS  Google Scholar 

  70. Yamada K., Diffusion tensor tractography should be used with caution, Proc. Natl. Acad. Sci. USA, 2009, 106, E14

    PubMed  CAS  PubMed Central  Google Scholar 

  71. Brauer J., Anwander A., Perani D., Friederici A.D., Dorsal and ventral pathways in language development, Brain Lang., 2013, 127, 289–295

    PubMed  Google Scholar 

  72. Makris N., Papadimitriou G.M., Kaiser J.R., Sorg S., Kennedy D.N., Pandya D.N., Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study, Cereb. Cortex, 2009, 19, 777–785

    Google Scholar 

  73. Catani M., Howard R.J., Pajevic S., Jones D.K., Virtual in vivo dissection of white matter fasciculi in the human brain, Neuroimage, 2002, 17, 77–94

    PubMed  Google Scholar 

  74. Schmahmann J.D., Smith E.E., Eichler F.S., Filley C.M., Cerebral white matter. Neuroanatomy, clinical neurology, and neurobehavioral correlates, Ann. NY Acad. Sci., 2008, 1142, 266–309

    PubMed  CAS  PubMed Central  Google Scholar 

  75. Catani M., Mesulam M.-M., Jakobsen E., Malik F., Matersteck A., Wieneke C., et al., A novel frontal pathway underlies verbal fluency in primary progressive aphasia, Brain, 2013, 136, 2619–2628

    PubMed  PubMed Central  Google Scholar 

  76. Harvey D.Y., Wei T., Ellmore T.E., Hamilton C.A., Schnur T.T., Neuropsychological evidence for the functional role of the uncinate fasciculus in semantic control, Neuropsychologia, 2013, 51, 789–801

    PubMed  Google Scholar 

  77. Papagno C., Miracapillo C., Casarotti A., Romero Lauro L.J., Castellano A., Falini A., et al., What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval, Brain, 2011, 134, 405–414

    PubMed  Google Scholar 

  78. Nomura K., Kazui H., Tokunaga H., Hirata M., Goto T., Goto Y., et al., Possible roles of the dominant uncinate fasciculus in naming objects: a case report of intraoperative electrical stimulation on a patient with a brain tumour, Behav. Neurol., 2013, 27, 229–234

    PubMed  Google Scholar 

  79. Han Z., Ma Y., Gong G., Caramazza A., Bi Y., White matter structural connectivity underlying semantic processing: evidence from brain damaged patients, Brain, 2013, 136, 2952–2965

    PubMed  Google Scholar 

  80. Duffau H., The anatomo-functional connectivity of language revisited. New insights provided by electrostimulation and tractography, Neuropsychologia, 2008, 46, 927–934

    PubMed  Google Scholar 

  81. Duffau H., Moritz-Gasser S., Mandonett E., A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming, Brain Lang., 2014, 131, 1–10

    PubMed  Google Scholar 

  82. Makris N., Preti M.G., Asami T., Pelavin P., Campbell B., Papadimitriou G.M., et al., Human middle longitudinal fascicle: variations in patterns of anatomical connections, Brain Struct. Funct., 2013, 218, 951–968

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Seltzer B., Pandya D.N., Further observations on parietotemporal connections in the rhesus monkey, Exp. Brain Res., 1984, 55, 301–312

    PubMed  CAS  Google Scholar 

  84. Wang Y., Fernandez-Miranda J.C., Verstynen T., Pathak S., Schneider W., Yeh F.-C., Rethinking the role of the middle longitudinal fascicle in language and auditory pathways, Cereb. Cortex, 2013, 23, 2347–2356

    PubMed  Google Scholar 

  85. Menjot de Champfleur N., Maldonado I.L., Moritz-Gasser S., Machi P., Le Bars E., Bonafé A., et al., Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human, Eur. J. Radiol., 2013, 81, 151–157

    Google Scholar 

  86. Turken A.U., Dronkers N.F., The neural architecture of the language comprehension network: converging evidence from leasion and connectivity analyses, Front. Syst. Neurosci., 2011, 5, 1–20

    PubMed  PubMed Central  Google Scholar 

  87. De Witt Hamer P., Moritz-Gasser S., Gatignol P., Duffau H., Is the human left middle longitudinal fasciculus essential for language? A brain electrostimulation study, Hum. Brain Mapp., 2011, 32, 962–973

    PubMed  Google Scholar 

  88. Desmurget M., Bonnetblanc F., Duffau H., Contrasting acute and slow-growing lesions: a new door to brain plasticity, Brain, 2007, 130, 898–914

    PubMed  Google Scholar 

  89. Martino J., De Witt Hamer P., Vergani F., Brogna C., de Lucas E.M., Vázquez-Barquero A., et al., Cortex-sparing fiber dissection: an improved method for the study of white matter anatomy in the human brain, J. Anat., 2011, 219, 531–541

    PubMed  PubMed Central  Google Scholar 

  90. Gil-Robles S., Carvallo A., del Mar Jimenez M., Caicoya A.G., Martinez R., Ruiz-Ocana C., et al., Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation, Neurosurgery, 2013, 72, 678–686

    PubMed  Google Scholar 

  91. Mandonnet E., Nouet A., Gatignol P., Cappelle L., Duffau H., Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study, Brain, 2007, 130, 623–629

    PubMed  Google Scholar 

  92. Catani M., Jones D.K., Donato R., ffytche D.H., Occipito-temporal connections in the human brain, Brain, 2003, 126, 2093–2107

    PubMed  Google Scholar 

  93. Epelbaum S., Pinel P., Gaillard R., Delmaire C., Perrin M., Dupont S., et al., Pure alexia as a disconnection syndrome: new diffusion imaging evidence for an old concept, Cortex, 2008, 44, 962–974

    PubMed  Google Scholar 

  94. Duffau H., Herbert G., Moritz-Gasser S., Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients, Front. Syst. Neurosci., 2013, 7, 44

    PubMed  PubMed Central  Google Scholar 

  95. Kier L.E., Staib H.L., Davis L.M., Bronen R.A., MR imaging of the temporal stem: anatomic dissection tractography of the uncinate fasciculus, inferior occipito-frontal fasciculus, and Meyer’s loop of the optic radiation, Am. J. Neuroradiol., 2004, 25, 677–691

    PubMed  Google Scholar 

  96. Schmahmann J.D., Pandya D.N., The complex history of the frontooccipital fasciculus, J. Hist. Neurosci., 2007, 16, 362–377

    PubMed  Google Scholar 

  97. Vandermosten M., Boets B., Poelmans H., Sunaert S., Wouters J., Ghesquière P., A tractography study in dyslexia: neuroanatomic correlates of orthographic, phonological and speech processing, Brain, 2012, 135, 935–948

    Google Scholar 

  98. Martino J., Brogna C., Robles S.G., Vergani F., Duffau H., Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data, Cortex, 2010, 46, 691–699

    PubMed  Google Scholar 

  99. Sarubbo S., De Benedictis A., Maldonado I.L., Basso G., Duffau H., Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle, Brain Struct. Funct., 2013, 218, 21–37

    PubMed  Google Scholar 

  100. Caverzasi E., Papinutto N., Amirbekian B., Berger M.S., Henry R.G., Q-ball of inferior fronto-occipital fasciculus and beyond, PLoS One, 2014, 9, e100274

    PubMed  PubMed Central  Google Scholar 

  101. Duffau H., Gatignol P., Mandonnet E., Peruzzi P., Tzourio-Mazoyer N., Capelle L., New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations, Brain, 2005, 128, 797–810

    PubMed  Google Scholar 

  102. Catani M., Mesulam M.-M., The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state, Cortex, 2008, 44, 953–961

    PubMed  PubMed Central  Google Scholar 

  103. Motomura K., Fujii M., Maesawa S., Kuramitsu S., Natsume A., Wakabayashi T., Association of dorsal inferior frontooccipital fasciculus fibers in the deep parietal lobe with both reading and writing processes: a brain mapping study, J. Neurosurg., 2014, 121, 142–148

    PubMed  Google Scholar 

  104. Catani M., From hodology to function, Brain, 2007, 130, 602–605

    PubMed  Google Scholar 

  105. Gierhan S.M.E., Connections for auditory language in the human brain, Brain Lang., 2013, 127, 205–221

    PubMed  Google Scholar 

  106. Bressler S.L., Menon V., Large-scale brain networks in cognition: emerging methods and principles, Trends Cogn. Sci., 2010, 14, 277–290

    PubMed  Google Scholar 

  107. Mesulam M.-M., The evolving landscape of human cortical connectivity: facts and inferences, Neuroimage, 2012, 62, 2182–2189

    PubMed  PubMed Central  Google Scholar 

  108. Catani M., Thiebaut de Schotten M., Slater D., Dell’Acqua F., Connectomic approaches before the connectome, Neuroimage, 2013, 80, 2–13

    PubMed  CAS  Google Scholar 

  109. Catani M., The connectional anatomy of language: recent contributions from diffusion tensor tractography, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy, Elsevier, Amsterdam, The Netherlands, 2009, 403–414

    Google Scholar 

  110. Dick A.S., Tremblay P., Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language, Brain, 2012, 135, 3529–3550

    PubMed  Google Scholar 

  111. Dick A.S., Bernal B., Tremblay P., The language connectome: new pathways, new concepts, Neuroscientist, 2013, Epub ahead of print, DOI: 10.1177/1073858413513502

    Google Scholar 

  112. Lindenberg R., Fangerau H., Seitz R.J., “Broca’s area” as a collective term?, Brain Lang., 2007, 102, 22–29

    PubMed  Google Scholar 

  113. Wise R.J.S., Scott S.K., Blank C., Mummery C.J., Murphy K., Warburton E.A., Separate neural subsystems within ‘Wernicke’s area’, Brain, 2001, 124, 83–95

    PubMed  CAS  Google Scholar 

  114. Lemaire J.-J., Golby A., Wells W.M.3rd, Pujol S., Tie Y., Rigolo L., et al., Extended Broca’s area in the functional connectome of language in adults: combined cortical and subcortical singlesubject analysis using fMRI and DTI tractography, Brain Topogr., 2013, 26, 428–441

    PubMed  PubMed Central  Google Scholar 

  115. Kinoshita M., Shinohara H., Hori O., Ozaki N., Ueda F., Nakada M., et al., Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractography anatomy, J. Neurosurg., 2012, 116, 323–330

    PubMed  Google Scholar 

  116. Catani M., Dell’Acqua F., Vergani F., Malik F., Hodge H., Roy P., et al., Short frontal lobe connections of the human brain, Cortex, 2012, 48, 273–291

    PubMed  Google Scholar 

  117. Bartsch A.J., Biller A., Homola G.A., Tractography for surgical targeting, In: Johansen-Berg H., Behrens T.E.J. (Eds.), Diffusion MRI: from quantitative measurement to in vivo neuroanatomy. Elsevier, Amsterdam, The Netherlands, 2009, 415–444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanja Kljajevic.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kljajevic, V. White matter architecture of the language network. Translat.Neurosci. 5, 239–252 (2014). https://doi.org/10.2478/s13380-014-0232-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-014-0232-8

Keywords

Navigation