Skip to main content
Log in

Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target

  • Review Article
  • Published:
Translational Neuroscience

Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder characterized by the extracellular deposits of β amyloid peptides (Aβ) in senile plaques, and intracellular aggregates of hyperphosphorylated tau in neurofibrillary tangles (NFT). Although accumulation of Aβ has been long considered a leading hypothesis in the disease pathology, it is increasingly evident that the role hyperphosphorylation of tau in destabilization of microtubule assembly and disturbance of axonal transport is equally detrimental in the neurodegenerative process. The main kinase involved in phosphorylation of tau is glycogen-synthase kinase 3-beta (GSK-3β). Intracellular accumulation of Aβ also likely induces increase in hyperphosphorylated tau by a mechanism dependent on GSK-3β. In addition, Aβ affects production of ceramides, the major sphingolipids in mammalian cells, by acting on sphingomyelinases, enzymes responsible for the catabolic formation of ceramides from the sphingomyelin. Generated ceramides in turn increase production of Aβ by acting on β-secretase, a key enzyme in the proteolytic processing of the amyloid precursor protein (APP), altogether leading to a ceramide-Aβ-hyperphosphorylated tau cascade that ends in neuronal death. Modulators and inhibitors acting on members of this devastating cascade are considered as potential targets for AD therapy. There is still no adequate treatment for AD patients. Novel therapeutic strategies increasingly consider the combination of multiple targets and interactions among the key members of implicated molecular pathways. This review summarizes recent findings and therapeutic perspectives in the pathology and treatment of AD, with the emphasis on the interplay between hyperphosphorylated tau, amyloid β, and sphingolipid mediators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β protein

AD:

Alzheimer’s disease

AICD:

APP intracellular domain

APP:

Amyloid precursor protein

BACE1:

β-secretase

BDNF:

Brain-derived neurotrophic factor

Cer:

Ceramides

Cdk5:

Cyclin-dependent kinase 5

GSK-3β:

Glycogen synthase kinase-3β

NFT:

Geurofibrillary tangles

PA:

Palmitic acid

PHF:

Paired helical filaments

PI3-K:

Phosphatidylinositide 3-kinase

PP2A:

Protein phosphatase 2A

NFT:

Neurofibrillary tangles

SM:

Sphingomyelinase

SPT:

Serine palmitoyltransferase

References

  1. Hanger D.P., Anderton B.H., Noble W., Tau phosphorylation: the therapeutic challenge for neurodegenerative disease, Trends Mol. Med., 2009, 15, 112–119

    CAS  PubMed  Google Scholar 

  2. Solfrizzi V., D’Introno A., Colacicco A.M., Capurso C., Del Parigi A., Capurso S., et al., Dietary fatty acids intake: possible role in cognitive decline and dementia, Exp. Gerontol., 2005, 40, 257–270

    CAS  PubMed  Google Scholar 

  3. Takechi R., Galloway S., Pallebage-Gamarallage M.M., Lam V., Mamo J.C., Dietary fats, cerebrovasculature integrity and Alzheimer’s disease risk, Prog. Lipid Res., 2010, 49, 159–170

    CAS  PubMed  Google Scholar 

  4. Roher A.E., Weiss N., Kokjohn T.A., Kuo Y.M., Kalback W., Anthony J., et al., Increased Aβ peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease, Biochemistry, 2002, 41, 11080–11090

    CAS  PubMed  Google Scholar 

  5. Presečki P., Mück-Šeler D., Mimica N., Pivac N., Mustapić M., Stipčević T., et al., Serum Lipid Levels in Patients with Alzheimer’s Disease, 2011, Coll. Antropol., 35, Suppl. 1, 115–120

  6. Grundke-Iqbal I., Iqbal K., Quinlan M., Tung Y.-C., Zaidi M.S., Wisniewski H.M., Microtubule-associated protein tau. A component of Alzheimer paired helical filaments, J. Biol. Chem., 1986, 6084–6089

    Google Scholar 

  7. Blennow K., de Leon M.J., Zetterberg H., Alzheimer’s disease, Lancet, 2006, 368, 387–403

    CAS  PubMed  Google Scholar 

  8. Gouras G.K., Tampellini D., Takahashi R.H., Capetillo-Zarate E., Intraneuronal β-amyloid accumulation and synapse pathology in Alzheimer’s disease, Acta Neuropathol., 2010, 119, 523–541

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Šimić G., Gnjidić M., Kostović I., Cytoskeletal changes as an alternative view on pathogenesis of Alzheimer’s disease, Period. Biol., 1998, 100, 165–173

    Google Scholar 

  10. Brandt R., Hundelt M., Shahani N., Tau alteration and neuronal degeneration in tauopathies: mechanisms and models, Biochim. Biophys. Acta, 2005, 1739, 331–354

    CAS  PubMed  Google Scholar 

  11. Rapoport M., Dawson H.N., Binder L.I., Vitek M.P., Ferreira A., Tau is essential to β-amyloid-induced neurotoxicity, Proc. Natl. Acad. Sci. USA, 2002, 99, 6364–6369

    CAS  PubMed  Google Scholar 

  12. Resende R., Ferreiro E., Pereira C., Resende Oliveira C., ER stress is involved in Aβ-induced GSK-3β activation and tau phosphorylation, J. Neurosci. Res., 2008, 86, 2091–2099

    CAS  PubMed  Google Scholar 

  13. Huang H.C., Jiang Z.F., Accumulated amyloid-β peptide and hyperphosphorylated tau protein: relationship and links in Alzheimer’s disease, J. Alzheimers Dis., 2009, 16, 15–27

    CAS  PubMed  Google Scholar 

  14. Zhang Z., Zhao R., Qi J., Wen S., Tang Y., Wang D., Inhibition of glycogen synthase kinase-3β by Angelica sinensis extract decreases β-amyloid-induced neurotoxicity and tau phosphorylation in cultured cortical neurons, J. Neurosci. Res., 2011, 89, 437–447

    CAS  PubMed  Google Scholar 

  15. Jin M., Shepardson N., Yang T., Chen G., Walsh D., Selkoe D.J., Soluble amyloid β-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration, Proc. Natl. Acad. Sci. USA, 2011, 108, 5819–5824

    CAS  PubMed  Google Scholar 

  16. Chabrier M.A., Blurton-Jones M., Agazaryan A.A., Nerhus J.L., Martinez-Coria H., LaFerla F.M., Soluble Aβ promotes wild-type tau pathology in vivo, J. Neurosci., 2012, 32, 17345–17350

    CAS  PubMed  PubMed Central  Google Scholar 

  17. McKee A.C., Carreras I., Hossain L., Ryu H., Klein W.L., Oddo S., et al., Ibuprofen reduces Aβ, hyperphosphorylated tau and memory deficits in Alzheimer mice, Brain Res., 2008, 1207, 225–236

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lanzillotta A., Sarnico I., Benarese M., Branca C., Baiguera C., Hutter-Paier B., et al., The γ-secretase modulator CHF5074 reduces the accumulation of native hyperphosphorylated tau in a transgenic mouse model of Alzheimer’s disease, J. Mol. Neurosci., 2011, 45, 22–31

    CAS  PubMed  Google Scholar 

  19. Hernandez P., Lee G., Sjoberg M., Maccioni R.B., Tau phosphorylation by cdk5 and Fyn in response to amyloid peptide Aβ25–35: involvement of lipid rafts, J. Alzheimers Dis., 2009, 16, 149–156

    CAS  PubMed  Google Scholar 

  20. Kawarabayashi T., Shoji M., Younkin L.H., Wen-Lang L., Dickson D.W., Murakami T., et al., Dimeric amyloid β protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease, J. Neurosci., 2004, 24,15, 3801–3809

    CAS  PubMed  Google Scholar 

  21. Grimm M.O.W., Rothhaar T.L., Hartmann T., The role of APP proteolytic processing in lipid metabolism, Exp. Brain Res., 2012, 217, 365–375

    CAS  PubMed  Google Scholar 

  22. Aronov S., Aranda G., Behar L., Ginzburg I., Visualization of translated tau protein in the axons of neuronal P19 cells and characterization of tau RNP granules, J. Cell Sci., 2002, 115, 3817–3827

    CAS  PubMed  Google Scholar 

  23. Esmaeli-Azad B., McCarty J.H., Feinstein S.C., Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability, J. Cell Sci., 1994, 107, 869–879

    CAS  PubMed  Google Scholar 

  24. Šimić G., Stanić G., Mladinov M., Jovanov-Milošević N., Kostović I., Hof P.R., Does Alzheimer’s disease begin in the brainstem?, Neuropathol. Appl. Neurobiol., 2009, 35, 532–554

    PubMed  PubMed Central  Google Scholar 

  25. Takuma H., Arawaka S., Mori H., Isoforms changes of tau protein during development in various species, Dev. Brain Res., 2003, 142, 121–127

    CAS  Google Scholar 

  26. Deshpande A., Win K.M., Busciglio J., Tau isoform expression and regulation in human cortical neurons, FASEB J., 2008, 22, 2357–2367

    CAS  PubMed  Google Scholar 

  27. Jovanov-Milošević N., Petrović D., Sedmak G., Vukšić M., Hof P.R., Šimić G., Human fetal tau protein isoform: possibilities for Alzheimer’s disease treatment, Int. J. Biochem. Cell. Biol., 2012, 44, 1290–1294

    PubMed  PubMed Central  Google Scholar 

  28. Lee G., Neve R.L., Kosik K.S., The microtubule binding domain of tau protein, Neuron, 1989, 2, 1615–1624

    CAS  PubMed  Google Scholar 

  29. Buée L., Bussière T., Buée-Scherrer V., Delacourte A., Hof P.R., Tau protein isoforms, phosphorylation and role in neurodegenerative disorders, Brain Res. Rev., 2000, 33, 95–130

    PubMed  Google Scholar 

  30. Ballatore C., Lee V.M., Trojanowski J.Q., Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders, Nat. Rev. Neurosci., 2007, 8, 663–672

    CAS  PubMed  Google Scholar 

  31. Adams S.J., DeTure M.A., McBride M., Dickson D.W., Petrucelli L., Three repeat isoforms of tau inhibit assembly of four repeat tau filaments, PLoS One, 2010, 5, e10810

    PubMed  PubMed Central  Google Scholar 

  32. Johnson G.V., Stoothoff W.H., Tau phosphorylation in neuronal cell function and dysfunction, J. Cell Sci., 2004, 117, 5721–5729

    CAS  PubMed  Google Scholar 

  33. Iqbal K., Liu F., Gong C.X., Grundke-Iqbal I., Tau in Alzheimer disease and related tauopathies, Curr. Alzheimer Res., 2010, 7, 656–664

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Morishima-Kawashima M., Hasegawa M., Takio K., Suzuki M., Yoshida H., Titani K., et al., Proline-directed and non-proline-directed phosphorylation of PHF-tau, J. Biol. Chem., 1995, 270, 823–829

    CAS  PubMed  Google Scholar 

  35. Wang J.Z., Xia Y.Y., Grundke-Iqbal I., Iqbal K., Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration, J. Alzheimers Dis., 2013, Suppl 1, S123–S139

    Google Scholar 

  36. Gray E.G., Paula-Barbosa M., Roher A., Alzheimer’s disease: paired helical filaments and cytomembranes, Neuropathol. Appl. Neurobiol., 1987, 13, 91–110

    CAS  PubMed  Google Scholar 

  37. Jenkins S.M., Johnson G.V., Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols, J. Neurochem., 1999, 73, 1843–1850

    CAS  PubMed  Google Scholar 

  38. Cho J.-H., Johnson G.V.W., Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3β (GSK3β) plays a critical role in regulating tau’s ability to bind and stabilize microtubules, J. Neurochem., 2004, 88, 349–358

    CAS  PubMed  Google Scholar 

  39. Alonso A.D., Di Clerico J., Li B., Corbo C.P., Alaniz M.E., Grundke-Iqbal I., et al., Phosphorylation of tau at Thr212, Thr231, and Ser262 combined causes neurodegeneration, J. Biol. Chem., 2010, 285, 30851–30860

    CAS  PubMed  Google Scholar 

  40. Iijima-Ando K., Sekiya M., Maruko-Otake A., Ohtake Y., Suzuki E., Lu B., et al., Loss of axonal mitochondria promotes taumediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1, PLoS Genet., 2012, 8, e1002918

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Alonso A.C, Zaidi T., Novak M., Grundke-Iqbal I., Iqbal K., Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments, Proc. Natl. Acad. Sci. USA, 2001, 98, 6923–6928

    CAS  PubMed  Google Scholar 

  42. Kimura T., Ono T., Takamatsu J., Yamamoto H., Ikegami K., Kondo A., et al., Sequential changes of tau-site-specific phosphorylation during development of paired helical filaments, Dementia, 1996, 7, 177–181

    CAS  PubMed  Google Scholar 

  43. Augustinack J.C., Schneider A., Mandelkow E.-M., Hyman B.T., Specific tau phosphorylation sites correlate with severity of neuronal cytopathology in Alzheimer’s disease, Acta Neuropathol., 2002, 103, 26–35

    CAS  PubMed  Google Scholar 

  44. Arnold S.E., Hyman B.T., Flory J., Damasio A.R., Van Hoesen G.W., The topographical and neuroanatomical distribution of neurofibrillary tangles and neuritic plaques in the cerebral cortex of patients with Alzheimer’s disease, Cereb. Cortex, 1991, 1, 103–116

    CAS  PubMed  Google Scholar 

  45. Braak H., Braak E., Neuropathological stageing of Alzheimer-related changes, Acta Neuropathol., 1991, 82, 239–259

    CAS  PubMed  Google Scholar 

  46. Šimić G., Kostović I., Winblad B., Bogdanović N., Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease, J. Comp. Neurol., 1997, 379, 482–494

    PubMed  Google Scholar 

  47. Šimić G., Bexheti S., Kelović Z., Kos M., Grbić K., Hof P.R., et al., Hemispheric asymmetry, modular variability and age-related changes in the human entorhinal cortex, Neuroscience, 2005, 130, 911–25

    Google Scholar 

  48. Braak H., Thal D.R., Ghebremedhin E., Del Tredici K., Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years, J. Neuropathol. Exp. Neurol., 2011, 70, 960–969

    CAS  PubMed  Google Scholar 

  49. Watanabe A., Hasegawa M., Suzuki M., Takio K., Morishima-Kawashima M., Titani K., et al., In vivo phosphorylation sites in fetal and adult rat tau, J. Biol. Chem., 1993, 268, 25712–25717

    CAS  PubMed  Google Scholar 

  50. Avila J., Tau phosphorylation and aggregation in Alzheimer’s disease pathology, FEBS Lett., 2006, 580, 2922–2927

    CAS  PubMed  Google Scholar 

  51. Ferrer I., Gomez-Isla T., Puig B., Freixes M., Ribé E., Dalfó E., et al., Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer’s disease and tauopathies, Curr. Alzheimer Res., 2005, 2, 3–18

    CAS  PubMed  Google Scholar 

  52. Michel G., Mercken M., Murayama M., Noguchi K., Ishiguro K., Imahori K., et al., Characterization of tau phosphorylation in glycogen synthase kinase-3β and cyclin dependent kinase-5 activator (p23) transfected cells, Biochim. Biophys. Acta, 1998, 1380, 177–182

    CAS  PubMed  Google Scholar 

  53. Maccioni R.B., Otth C., Concha I.I., Muñoz J.P., The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer’s pathology, Eur. J. Biochem., 2001, 268, 1518–1527

    CAS  PubMed  Google Scholar 

  54. Li G., Yin H., Kuret J., Casein kinase 1 delta phosphorylates tau and disrupts its binding to microtubules, J. Biol. Chem., 2004, 279, 15938–15945

    CAS  PubMed  Google Scholar 

  55. Lebouvier T., Scales T.M., Williamson R., Noble W., Duyckaerts C., Hanger D.P et al., The microtubule-associated protein tau is also phosphorylated on tyrosine, J. Alzheimers Dis., 2009, 18, 1–9

    CAS  PubMed  Google Scholar 

  56. Cai Z., Yan L.-J., Li K., Quazi S.H., Zhao B., Roles of AMP-activated protein kinase in Alzheimer’s disease, Neuromol. Med., 2012, 14, 1–14

    CAS  Google Scholar 

  57. Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Yardin C., et al., Tau protein kinases: involvement in Alzheimer’s disease, Ageing Res. Rev., 2013, 12, 289–309

    CAS  PubMed  Google Scholar 

  58. Martin L., Magnaudeix A., Esclaire F., Yardin C., Terro F., Inhibition of glycogen synthase kinase-3β downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A, Brain Res., 2009, 1252, 66–75

    CAS  PubMed  Google Scholar 

  59. Matsuo E.S., Shin R.W., Billingsley M.L., Van de Voorde A., O’Connor M., Trojanowski J.Q., et al., Biopsy-derived adult human brain tau is phosphorylated at many of the same sites as Alzheimer’s disease paired helical filament tau, Neuron, 1994, 13, 989–1002

    CAS  PubMed  Google Scholar 

  60. Martin L., Latypova X., Wilson C.M., Magnaudeix A., Perrin M.L., Terro F., Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A, Ageing Res Rev., 2013, 12, 39–49

    CAS  PubMed  Google Scholar 

  61. Yamaguchi H., Ishiguro K., Uchida T., Takashima A., Lemere C.A., Imahori K., Preferential labeling of Alzheimer neurofibrillary tangles with antisera for tau protein kinase (TPK) I/glycogen synthase kinase-3 β and cyclin-dependent kinase 5, a component of TPK II, Acta Neuropathol., 1996, 92, 232–241

    CAS  PubMed  Google Scholar 

  62. Pei J.J., Braak E., Braak H., Grundke-Iqbal I., Iqbal K., Winblad B., et al., Distribution of active glycogen synthase kinase 3β (GSK-3 β) in brains staged for Alzheimer disease neurofibrillary changes, J. Neuropathol. Exp. Neurol., 1999, 58, 1010–1019

    CAS  PubMed  Google Scholar 

  63. Leroy K., Yilmaz Z., Brion J.P., Increased level of active GSK-3β in Alzheimer’s disease and accumulation in argyrophilic grains and in neurones at different stages of neurofibrillary degeneration, Neuropathol. Appl. Neurobiol., 2007, 33, 43–55

    CAS  PubMed  Google Scholar 

  64. Phiel C.J., Wilson C.A., Lee V.M., Klein P.S., GSK-3α regulates production of Alzheimer’s disease amyloid-beta peptides, Nature, 2003, 423, 435–439

    CAS  PubMed  Google Scholar 

  65. Wagner U., Utton M., Gallo J.-M., Miller C.C.J., Cellular phosphorylation of tau by GSK-3β influences tau binding to microtubules and microtubule organisation, J. Cell Sci., 1996, 109, 1537–1543

    CAS  PubMed  Google Scholar 

  66. Muñoz-Montaño J.R., Moreno F.J., Avila J., Diaz-Nido J., Lithium inhibits Alzheimer’s disease-like tau protein phosphorylation in neurons, FEBS Lett., 1997, 411, 183–188

    PubMed  Google Scholar 

  67. Cuchillo-Ibanez I., Seereeram A., Byers H.L., Leung K.Y., Ward M.A., Anderton B.H., et al., Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin, FASEB J., 2008, 22, 3186–3195

    CAS  PubMed  Google Scholar 

  68. Li T., Hawkes C., Qureshi H.Y., Kar S., Paudel H.K., Cyclin-dependent protein kinase 5 primes microtubule-associated protein tau sitespecifically for glycogen synthase kinase 3β, Biochemistry, 2006, 45, 3134–3145

    CAS  PubMed  Google Scholar 

  69. Terwel D., Muyllaert D., Dewachter I., Borghgraef P., Croes S., Devijver H., et al., Amyloid activates GSK-3β to aggravate neuronal tauopathy in bigenic mice, Am. J. Pathol., 2008, 172, 786–798

    CAS  PubMed  Google Scholar 

  70. Noble W., Olm V., Takata K., Casey E., Mary O., Meyerson J., et al., Cdk5 is a key factor in tau aggregation and tangle formation in vivo, Neuron, 2003, 38, 555–565

    CAS  PubMed  Google Scholar 

  71. Rankin C.A., Sun Q., Gamblin T.C., Tau phosphorylation by GSK-3β promotes tangle-like filament morphology, Mol. Neurodeg., 2007, 2, 12

    Google Scholar 

  72. Lee C.W., Lau K.F., Miller C.C., Shaw P.C., Glycogen synthase kinase-3β-mediated tau phosphorylation in cultured cell lines, Neuroreport, 2003, 14, 257–260

    CAS  PubMed  Google Scholar 

  73. Liu S.J., Zhang A.H., Li H.L., Wang Q., Deng H.M., Netzer W.J., et al., Overactivation of glycogen synthase kinase-3 by inhibition of phosphoinositol-3 kinase and protein kinase C leads to hyperphosphorylation of tau and impairment of spatial memory, J. Neurochem., 2003, 87, 1333–1344

    CAS  PubMed  Google Scholar 

  74. Su Y., Ryder J., Li B., Wu X., Fox N., Solenberg P., et al., Lithium, a common drug for bipolar disorder treatment, regulates amyloid-β precursor protein processing, Biochemistry, 2004, 43, 6899–6908

    CAS  PubMed  Google Scholar 

  75. Takashima A., Murayama M., Murayama O., Kohno T., Honda T., Yasutake K., et al., Presenilin 1 associates with glycogen synthase kinase-3β and its substrate tau, Proc. Natl. Acad. Sci. USA, 1998, 95, 9637–9641

    CAS  PubMed  Google Scholar 

  76. Metcalfe M.J., Figueiredo-Pereira M.E., Relationship between tau pathology and neuroinflammation in Alzheimer’s disease, Mt. Sinai J. Med., 2010, 77, 50–58

    PubMed  PubMed Central  Google Scholar 

  77. Parr C., Carzaniga R., Gentleman S.M., Van Leuven F., Walter J., Sastre M., Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-β precursor protein, Mol. Cell. Biol., 2012, 32, 4410–4418

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Noble W., Planel E., Zehr C., Olm V., Meyerson J., Suleman F., et al., Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo, Proc. Natl. Acad. Sci. USA, 2005, 102, 6990–6995

    CAS  PubMed  Google Scholar 

  79. Zhao L., Wang F., Gui B., Hua F., Qian Y., Prophylactic lithium alleviates postoperative cognition impairment by phosphorylating hippocampal glycogen synthase kinase-3β (Ser9) in aged rats, Exp. Gerontol., 2011, 46, 1031–1036

    CAS  PubMed  Google Scholar 

  80. Caccamo A., Oddo S., Tran L.X., LaFerla F.M., Lithium reduces tau phosphorylation but not Aβ or working memory deficits in a transgenic model with both plaques and tangles, Am. J. Pathol., 2007, 170, 1669–1675

    CAS  PubMed  Google Scholar 

  81. Serenó L., Coma M., Rodríguez M., Sánchez-Ferrer P., Sánchez M.B., Gich I., et al., A novel GSK-3β inhibitor reduces Alzheimer’s pathology and rescues neuronal loss in vivo, Neurobiol. Dis., 2009, 35, 359–367

    PubMed  Google Scholar 

  82. Medina M., Castro A., Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic, Curr. Opin. Drug Disc. Dev., 2008, 11, 533–543

    CAS  Google Scholar 

  83. Kramer T., Schmidt B., Lo Monte F., Small-molecule inhibitors of GSK-3: structural insights and their application to Alzheimer’s disease models, Int. J. Alzheimers Dis., 2012, 381029

    Google Scholar 

  84. Fumagalli F., Racagni G., Riva M.A., The expanding role of BDNF: a therapeutic target for Alzheimer’s disease?, Pharmacogenomics J., 2006, 6, 8–15

    CAS  PubMed  Google Scholar 

  85. Blurton-Jones M., Kitazawa M., Martinez-Coria H., Castello N.A., Müller F.J., Loring J.F., et al., Neural stem cells improve cognition via BDNF in a transgenic model of Alzheimer disease, Proc. Natl. Acad. Sci. USA, 2009, 106, 13594–13599

    CAS  PubMed  Google Scholar 

  86. Elliott E., Atlas R., Lange A., Ginzburg I., Brain-derived neurotrophic factor induces a rapid dephosphorylation of tau protein through a PI-3Kinase signalling mechanism, Eur. J. Pharmacol., 2005, 22, 1081–1089

    Google Scholar 

  87. Tong L., Balazs R., Thornton P.L., Cotman C.W., β-amyloid peptide at sublethal concentrations downregulates brain-derived neurotrophic factor functions in cultured cortical neurons, J. Neurosci., 2004, 24, 6799–6809

    CAS  PubMed  Google Scholar 

  88. Magrané J., Rosen K.M., Smith R.C., Walsh K., Gouras G.K., Querfurth H.W., Intraneuronal β-amyloid expression downregulates the Akt survival pathway and blunts the stress response, J. Neurosci., 2005, 25, 10960–10969

    PubMed  Google Scholar 

  89. Baki L., Shioi J., Wen P., Shao Z., Schwarzman A., Gama-Sosa M., et al., PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations, EMBO J., 2004, 23, 2586–2596

    CAS  PubMed  Google Scholar 

  90. Jana A., Hogan E.L., Pahan K., Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death, J. Neurol. Sci., 2009, 278, 5–15

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Ben-David O., Futerman A.H., The role of the ceramide acyl chain length in neurodegeneration: involvement of ceramide synthases, Neuromolecular. Med., 2010, 12, 341–350

    CAS  PubMed  Google Scholar 

  92. Rao R.P., Vaidyanathan N., Rengasamy M., Oommen A.M., Somaiya N., Jagannath M.R., Sphingolipid metabolic pathway: an overview of major roles played in human diseases, J. Lipids, 2013, 178910

    Google Scholar 

  93. Haughey N.J., Bandaru V.V., Bae M., Mattson M.P., Roles for dysfunctional sphingolipid metabolism in Alzheimer’s disease neuropathogenesis, Biochim. Biophys. Acta, 2010, 1801, 878–886

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mielke M.M., Lyketsos C.G., Alterations of the sphingolipid pathway in Alzheimer’s disease: new biomarkers and treatment targets?, Neuromol. Med., 2010, 12, 331–340

    CAS  Google Scholar 

  95. Mielke M.M., Haughey N.J., Could plasma sphingolipids be diagnostic or prognostic biomarkers for Alzheimer’s disease?, Clin. Lipidol., 2012, 7, 525–536

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Gomez-Brouchet A., Pchejetski D., Brizuela L., Garcia V., Altié M.F., Maddelein M.L., et al., Critical role for sphingosine kinase-1 in regulating survival of neuroblastoma cells exposed to amyloid-β peptide, Mol. Pharmacol., 2007, 72, 341–349

    CAS  PubMed  Google Scholar 

  97. Seyb K.I., Ansar S., Li G., Bean J., Michaelis M.L., Dobrowsky R.T., p35/Cyclin-dependent kinase 5 is required for protection against beta-amyloid-induced cell death but not tau phosphorylation by ceramide, J. Mol. Neurosci., 2007, 31, 23–35

    CAS  PubMed  Google Scholar 

  98. Barth B.M., Gustafson S.J, Kuhn T.B., Neutral sphingomyelinase activation precedes NADPH oxidase-dependent damage in neurons exposed to the proinflammatory cytokine TNFα, J. Neurosci. Res., 2012, 90, 229–242

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Grösch S., Schiffmann S., Geisslinger G., Chain length-specific properties of ceramides, Prog. Lipid Res., 2012, 51, 50–62

    PubMed  Google Scholar 

  100. Katsel P., Li C., Haroutunian V., Gene expression alterations in the sphingolipid metabolism pathways during progression of dementia and Alzheimer’s disease: a shift toward ceramide accumulation at the earliest recognizable stages of Alzheimer’s disease?, Neurochem. Res., 2007, 32, 845–856

    CAS  PubMed  Google Scholar 

  101. Tamboli I.Y., Prager K., Barth E., Heneka M., Sandhoff K., Walter J., Inhibition of glycosphingolipid biosynthesis reduces secretion of the β-amyloid precursor protein and amyloid β -peptide, J. Biol. Chem., 2005, 280, 28110–28117

    CAS  PubMed  Google Scholar 

  102. Kosicek M., Zetterberg H., Andreasen N., Peter-Katalinic J., Hecimovic S., Elevated cerebrospinal fluid sphingomyelin levels in prodromal Alzheimer’s disease, Neurosci. Lett., 2012, 516, 302–305

    CAS  PubMed  Google Scholar 

  103. Mielke M.M., Haughey N.J., Bandaru V.V., Weinberg D.D., Darby E., Zaidi N., et al., Plasma sphingomyelins are associated with cognitive progression in Alzheimer’s disease, J. Alzheimers Dis., 2011, 27, 259–269

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Takasugi N., Sasaki T., Suzuki K., Osawa S., Isshiki H., Hori Y., et al., BACE1 activity is modulated by cell-associated sphingosine-1-phosphate, J. Neurosci., 2011, 31, 6850–6857

    CAS  PubMed  Google Scholar 

  105. Yanagisawa K., Odaka A., Suzuki N., Ihara Y., GM1 gangliosidebound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease, Nat. Med., 1995, 1, 1062–1066

    CAS  PubMed  Google Scholar 

  106. Utsumi M., Yamaguchi Y., Sasakawa H., Yamamoto N., Yanagisawa K., Kato K., Up-and-down topological mode of amyloid β-peptide lying on hydrophilic/hydrophobic interface of ganglioside clusters, Glycoconj. J., 2009, 26, 999–1006

    CAS  PubMed  Google Scholar 

  107. Grimm M.O.W., Zimmer V.C., Lehmann J., Grimm H.S., Hartmann T., The impact of cholesterol, DHA, and sphingolipids on Alzheimer’s disease, BioMed Res. Int., 2013, 814390

  108. Han X., Holtzman M.D., McKeel D.W. Jr., Kelley J., Morris J.C., Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: potential role in disease pathogenesis, J. Neurochem., 2002, 82, 809–818

    CAS  PubMed  Google Scholar 

  109. Kawakami F., Yamaguchi A., Suzuki K., Yamamoto T., Ohtsuki K., Biochemical characterization of phospholipids, sulfatide and heparin as potent stimulators for autophosphorylation of GSK-3β and the GSK-3β -mediated phosphorylation of myelin basic protein in vitro, J. Biochem., 2008, 143, 359–367

    CAS  PubMed  Google Scholar 

  110. Mielke M.M., Bandaru V.V., Haughey N.J., Xia J., Fried L.P., Yasar S., et al., Serum ceramides increase the risk of Alzheimer disease: the Women’s Health and Aging Study II, Neurology, 2012, 79, 633–641

    CAS  PubMed  Google Scholar 

  111. Cutler R.G., Kelly J., Storie K., Pedersen W.A., Tammara A., Hatanpaa K., et al., Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease, Proc. Natl. Acad. Sci. USA, 2004, 17, 2070–2075

    Google Scholar 

  112. He X., Huang Y., Li B., Gong C.X., Schuchman E.H., Deregulation of sphingolipid metabolism in Alzheimer’s disease, Neurobiol. Aging, 2010, 31, 398–408

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Filippov V., Song M.A., Zhang K., Vinters H.V., Tung S., Kirsch W.M., et al., Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases, J. Alzheimers Dis., 2012, 29, 537–547

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Toman R.E., Movsesyan V., Murthy S.K., Milstien S., Spiegel S., Faden A.I., Ceramide-induced cell death in primary neuronal cultures: upregulation of ceramide levels during neuronal apoptosis, J. Neurosci. Res., 2002, 68, 323–330

    CAS  PubMed  Google Scholar 

  115. Zhang X., Wu J., Dou Y., Xia B., Rong W., Rimbach G., et al., Asiatic acid protects primary neurons against C2-ceramide-induced apoptosis, Eur. J. Pharmacol., 2012, 679, 51–59

    CAS  PubMed  Google Scholar 

  116. Ruvolo P.P., Deng X., Ito T., Carr B.K., May W.S., Ceramide induces Bcl2 dephosphorylation via a mechanism involving mitochondrial PP2A, J. Biol. Chem., 1999, 274, 20296–20300

    CAS  PubMed  Google Scholar 

  117. Puglielli L., Ellis B.C., Saunders A.J., Kovacs D.M., Ceramide stabilizes β-site amyloid precursor protein-cleaving enzyme 1 and promotes amyloid β-peptide biogenesis, J. Biol. Chem., 2003, 30, 19777–19783

    Google Scholar 

  118. Patil S., Melrose J., Chan C., Involvement of astroglial ceramide in palmitic acid-induced Alzheimer-like changes in primary neurons, Eur. J. Neurosci., 2007, 26, 2131–2141

    PubMed  Google Scholar 

  119. Jana A., Pahan K., Fibrillar amyloid-β peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. Implications for Alzheimer’s disease, J. Biol. Chem., 2004, 279, 51451–51459

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Malaplate-Armand C., Florent-Béchard S., Youssef I., Koziel V., Sponne I., Kriem B., et al., Soluble oligomers of amyloid-β peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinaseceramide pathway, Neurobiol. Dis., 2006, 23, 178–189

    CAS  PubMed  Google Scholar 

  121. Geekiyanage H., Upadhye A., Chan C., Inhibition of serine palmitoyltransfrase reduces Aβ and tau hyperphosphorylation in a murine model: a safe therapeutic strategy for Alzheimer’s disease, Neurobiol. Aging, 2013, 34, 2037–2051

    CAS  PubMed  Google Scholar 

  122. Jana A., Pahan K., Fibrillar amyloid-β-activated human astroglia kill primary human neurons via neutral sphingomyelinase: implications for Alzheimer’s disease, J. Neurosci., 2010, 30, 12676–12689

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Liu L., Martin R., Chan C., Palmitate-activated astrocytes via serine palmitoyl transferase increase BACE1 in primary neurons by sphingomyelinases, Neurobiol. Aging, 2013, 34, 540–550

    CAS  PubMed  Google Scholar 

  124. Patil S., Sheng L., Masserang A., Chan C., Palmitic acid-treated astrocytes induce BACE1 upregulation and accumulation of C-terminal fragment of APP in primary cortical neurons, Neurosci. Lett., 2006, 406, 55–99

    CAS  PubMed  Google Scholar 

  125. Grimm M.O., Grösgen S., Rothhaar T.L., Burg V.K., Hundsdörfer B., Haupenthal V.J., et al., Intracellular APP domain regulates serinepalmitoyl-CoA transferase expression and is affected in Alzheimer’s disease, Int. J. Alzheimers Dis., 2011, 695413

  126. Tsai G.E., Falk W.E., Gunther J., Coyle J.T., Improved cognition in Alzheimer’s disease with short-term D-cycloserine treatment, Am. J. Psychiatry, 1999, 156, 467–469

    CAS  PubMed  Google Scholar 

  127. Mukhopadhyay A., Saddoughi S.A., Song P., Sultan I., Ponnusamy S., Senkal C.E., et al., Direct interaction between the inhibitor 2 and ceramide via sphingolipid-protein binding is involved in the regulation of protein phosphatase 2A activity and signaling, FASEB J., 2009, 23, 751–763

    CAS  PubMed  Google Scholar 

  128. Darios F., Muriel M.P., Khondiker M.E., Brice A., Ruberg M., Neurotoxic calcium transfer from endoplasmic reticulum to mitochondria is regulated by cyclin-dependent kinase 5-dependent phosphorylation of tau, J. Neurosci., 2005, 25, 4159–4168

    CAS  PubMed  Google Scholar 

  129. Pérez M., Hernández F., Lim F., Díaz-Nido J., Avila J., Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model, J. Alzheimers Dis., 2003, 5, 301–308

    PubMed  Google Scholar 

  130. Nakashima H., Ishihara T., Suguimoto P., Yokota O., Oshima E., Kugo A., et al., Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies, Acta Neuropathol., 2005, 110, 547–556

    CAS  PubMed  Google Scholar 

  131. Engel T., Goñi-Oliver P., Lucas J.J., Avila J., Hernández F., Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert, J. Neurochem., 2006, 99, 1445–1455

    CAS  PubMed  Google Scholar 

  132. Rockenstein E., Torrance M., Adame A., Mante M., Bar-on P., Rose J.B., et al., Neuroprotective effects of regulators of the glycogen synthase kinase-3β signaling pathway in a transgenic model of Alzheimer’s disease are associated with reduced amyloid precursor protein phosphorylation, J. Neurosci., 2007, 27, 1981–1991

    CAS  PubMed  Google Scholar 

  133. Leroy K., Ando K., Héraud C., Yilmaz Z., Authelet M., Boeynaems J.M., et al., Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology, J. Alzheimers Dis., 2010, 19, 705–719

    CAS  PubMed  Google Scholar 

  134. Onishi T., Iwashita H., Uno Y., Kunitomo J., Saitoh M., Kimura E., et al., A novel glycogen synthase kinase-3 inhibitor 2-methyl-5-(3-{4-[(S)-methylsulfinyl]phenyl}-1-benzofuran-5-yl)-1, 3, 4-oxadiazole decreases tau phosphorylation and ameliorates cognitive deficits in a transgenic model of Alzheimer’s disease, J. Neurochem., 2011, 119, 1330–1340

    CAS  PubMed  Google Scholar 

  135. Noh M.Y., Chun K., Kang B.Y., Kim H., Park J.S., Lee H.C., et al., Newly developed glycogen synthase kinase-3 (GSK-3) inhibitors protect neuronal cells death in amyloid-β induced cell model and in a transgenic mouse model of Alzheimer’s disease, Biochem. Biophys. Res. Commun., 2013, 435, 274–281

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Jembrek, M.J., Babić, M., Pivac, N. et al. Hyperphosphorylation of tau by GSK-3β in Alzheimer’s disease: The interaction of Aβ and sphingolipid mediators as a therapeutic target. Translat.Neurosci. 4, 466–476 (2013). https://doi.org/10.2478/s13380-013-0144-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13380-013-0144-z

Keywords

Navigation